If 0.250 mol of HI(g) is introduced into a 2.00 L flask at 700 °C, what will be the concentration of $I_2(g)$ at equilibrium?

Marks 5

The initial concentration of HI(g) is $0.250 / 2.00 \text{ mol } \text{L}^{-1} = 0.125 \text{ mol } \text{L}^{-1}$.

	H ₂ (g)	I ₂ (g)	-	2HI(g)
Initial	0	0		0.125
Change	+x	+x		-2 <i>x</i>
Equilibrium	x	x		0.125 - 2x

Thus,

$$K_{\rm c} = \frac{[{\rm HI}]^2}{[{\rm H}_2][{\rm I}_2]} = \frac{(0.125 - 2x)^2}{(x)(x)} = \frac{(0.125 - 2x)^2}{x^2} = 49.0 \text{ (from 2008-N-5)}$$

$$(49.0)^{1/2} = \frac{(0.125 - 2x)}{x}$$

Rearranging gives $x = [I_2(g)] = 0.0139$ M.

Answer: 0.0139 M

If 0.274 g of H_2S were now introduced into the same flask, what would be the concentration of $S_2(g)$ at equilibrium?

The molar mass of H_2S is $(2 \times 1.008 \text{ (H)} + 32.06 \text{ (S)}) = 34.08 \text{ g mol}^{-1}$. Hence, 0.274 g of H_2S corresponds to:

number of moles = mass / molar mass =
$$(0.274 \text{ g}) / (34.08 \text{ g mol}^{-1}) = 8.04 \times 10^{-3} \text{ mol}$$

The initial concentration of H_2S is thus 8.04×10^{-3} mol / 2.00 M = 4.02×10^{-3} M. From above, $[I_2(g)] = 0.0139$ M and $[HI(g)] = (0.125 - 2 \times 0.0139)$ M = 0.0972 M.

Using the overall equilibrium reaction derived in 2008-N-5:

	2I ₂ (g)	2H ₂ S(g)	1	$S_2(g)$	4HI(g)
Initial	0.0139	0.00402		0	0.0972
Change	-2 <i>x</i>	-2 <i>x</i>		+x	+4x
Equilibrium	0.0139 - 2x	0.00402 - 2x		x	0.0972 + 4x

Thus,

$$K_{c} = \frac{[S_{2}][HI]^{4}}{[I_{2}]^{2}[H_{2}S]^{2}} = \frac{(x)(0.0972+4x)^{4}}{(0.0139-2x)^{2}(0.00402-2x)^{2}}$$
$$\sim \frac{(x)(0.0972)^{4}}{(0.0139)^{2}(0.00402)^{2}} = 2.23 \times 10^{-5} \text{ (from 2008-N-5)}$$

where the small x approximation has been used as K_c is so small. This gives:

$$x = [S_2(g)] = 7.82 \times 10^{-10} \text{ M}$$

Answer: $7.82 \times 10^{-10} \text{ M}$