• Cisplatin, [Pt(NH₃)₂Cl₂], is a particularly effective chemotherapy agent against certain types of cancer. Calculate the concentration of Pt²⁺(aq) ions in solution when 0.075 mol of cisplatin is dissolved in 1.00 L of a 1.00 M solution of NH₃. K_{stab} of [Pt(NH₃)₂Cl₂] = 3.4×10^{12} .

The initial concentration of cisplatin when 0.075 mol is dissolved in 1.00 L is 0.075 M.

As K_{stab} refers to the formation of the complex, the reaction table is:

	Pt ²⁺ (aq)	2Cl ⁻ (aq)	2NH ₃ (aq)	-	[Pt(NH ₃) ₂ Cl ₂]
Initial	0	0	1.00		0.075
Change	+x	+2x	+2x		- <i>x</i>
Equilibrium	x	2x	1.00 + 2x		0.075 - <i>x</i>

Hence:

$$K_{\text{stab}} = \frac{[\text{Pt}(\text{NH}_3)_2\text{Cl}_2]}{[\text{Pt}^{2+}][\text{Cl}^{-}]^2[\text{NH}_3]^2} = \frac{(0.075 - x)}{(x)(2x)^2(1.00 + 2x)^2} = 3.4 \times 10^{12}$$

As K_{stab} is so large, x will be very, very small and so $(1.00 + 2x) \sim 1.00$ and $(0.075 - x) \sim 0.075$. With this:

$$K_{\text{stab}} \sim \frac{(0.075)}{(x)(2x)^2(1.00)^2} = \frac{(0.075)}{(4x)^3} = 3.4 \times 10^{12}$$

 $x = [\text{Pt}^{2+}(\text{aq})] = 1.8 \times 10^{-5} \text{ M}$

Answer: **1.8** × **10**⁻⁵ **M**

What changes would occur to the values of K_{stab} for cisplatin and the concentration of $Pt^{2+}(aq)$ ions if solid KCl were dissolved in the above solution?

K _{stab}	increase	<u>no change</u>	decrease
$[Pt^{2+}(aq)]$	increase	no change	<u>decrease</u>

(i) K_{stab} is the stability constant – it is a constant at any given temperature.

(ii) From Le Chatelier's principle, if [Cl⁻(aq)] is increased then the equilibrium will shift to the right and so [Pt²⁺(aq)] will decrease.