• Carbon monoxide is commonly used in the reduction of iron ore to iron metal. Iron ore is mostly haematite, Fe₂O₃, in which case the complete reduction reaction is:

Marks	
5	

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$
 $\Delta H^{\circ} = -25 \text{ kJ mol}^{-1}$

Incomplete reduction, however, results in the formation of magnetite, Fe₃O₄:

$$3\text{Fe}_2\text{O}_3(s) + \text{CO}(g) \rightarrow 2\text{Fe}_3\text{O}_4(s) + \text{CO}_2(g) \quad \Delta H^{\circ} = -47 \text{ kJ mol}^{-1}$$

Use these heats of reaction to calculate the enthalpy change when one mole of magnetite is reduced to iron metal using carbon monoxide.

Answer:

Another iron oxide that can be formed as an intermediate during reduction is FeO. Use the following table of thermochemical data to show whether the formation of FeO from Fe₃O₄ is spontaneous or not at 25 $^{\circ}$ C.

	$\Delta_{\rm f} H^{\circ} ({ m kJ \ mol}^{-1})$	S° (J K ⁻¹ mol ⁻¹)
FeO	-272	61
Fe ₃ O ₄	-1118	146
СО	-111	198
CO_2	-394	214