• A saturated solution of lithium carbonate in pure water at 20 °C contains 1.33 g of solute per 100.0 mL of solution. Calculate the aqueous solubility product of lithium carbonate at this temperature.

The molar mass of Li₂CO₃ is $(2 \times 6.941 \text{ (Li)} + 12.01 \text{ (C)} + 3 \times 16.00 \text{ (O)})$ g mol⁻¹ = 73.892 g mol⁻¹. A mass of 1.33 g therefore corresponds to:

number of moles = $\frac{\text{mass}}{\text{molar mass}} = \frac{1.33 \text{ g}}{73.892 \text{ g mol}^{-1}} = 0.0180 \text{ mol}$

The reaction table for the dissolution of Li₂CO₃ is:

	Li ₂ CO ₃	 2Li ⁺ (aq)	CO ₃ ²⁻ (aq)
Initial	0.0180	0	0
Change	- <i>x</i>	+2x	+x
Equilibrium	-	0.0360	0.0180

These number of moles of $\text{Li}^+(aq)$ and $\text{CO}_3^{2-}(aq)$ in 100.0 mL. In a litre, the concentrations are therefore $[\text{Li}^+(aq)] = 0.360$ M and $[\text{CO}_3^{2-}(aq)] = 0.180$ M. The solubility product is therefore:

$$K_{\rm sp} = [{\rm Li}^+({\rm aq})]^2 [{\rm CO}_3^{2-}({\rm aq})] = (0.360)^2 (0.180) = 0.0233$$

 $K_{\rm sp} = 0.0233$

When the temperature of the same solution is raised to 40 °C, the solubility is reduced to 1.17 g per 100.0 mL of solution. What conclusions can be drawn about the sign of the standard enthalpy of dissolution of lithium carbonate?

Increasing the temperature leads to less dissolution: the equilibrium has shifted towards reactants (to the left). According to Le Chatelier's principle, this is consistent with an exothermic reaction: $\Delta H < 0$.