• A mixture of NaCl (5.0 g) and AgNO₃ (5.0 g) was added to 1.0 L of water. What are the concentrations of Ag⁺(aq), Cl⁻(aq) and Na⁺(aq) ions in solution after equilibrium has been established? $K_{sp}(AgCl) = 1.8 \times 10^{-10}$.

Marks 3

The molar masses of the two salts are: $M_{\text{NaCl}} = (22.99 \text{ (Na)} + 35.45 \text{ (Cl)}) \text{ g mol}^{-1} = 58.44 \text{ g mol}^{-1}$ $M_{\text{AgNO}_3} = (107.87 \text{ (Ag)} + 14.01 \text{ (N)} + 3 \times 16.00) \text{ g mol}^{-1} = 169.88 \text{ g mol}^{-1}$ The number of moles of salt added to the solution are therefore: number of moles of NaCl = $\frac{\text{mass}}{\text{molar mass}} = \frac{5.0}{58.44 \text{ g mol}^{-1}} = 0.0855 \text{ mol}$ number of moles of AgNO₃ = $\frac{5.0}{169.88 \text{ g mol}^{-1}} = 0.0294 \text{ mol}$ As 1.0 L of water is present, the initial concentrations of the ions are [Na⁺(aq)] = 0.086 \text{ M}, [Cl⁻(aq)] = 0.086 \text{ M} \text{ and } [Ag⁺(aq)] = 0.029 \text{ mol}. The Na⁺(aq) will form any precipitate with the ions present: [Na⁺(aq)] = 0.086 \text{ M}. The ionic product for the precipitation of AgCl(s) is given by: $Q_{\text{sp}} = [Ag^{+}(aq)][Cl^{-}(aq)] = (0.029)(0.086) = 0.0025$

As $Q_{sp} >> K_{sp}$, precipitation of AgCl(s) will occur. As $[Ag^+(aq)] < [C\Gamma(aq)]$, the silver ion concentration is limiting and so:

 $[Cl^{-}(aq)] = (0.086 - 0.029) M = 0.056 M$

As AgCl(s) is present, [Ag⁺(aq)] is given by the solubility product:

 $K_{\rm sp} = [{\rm Ag}^+({\rm aq})][{\rm Cl}^-({\rm aq})] = 1.8 \times 10^{-10}$

 $[Ag^{+}(aq)] = (1.8 \times 10^{-10}) / (0.056) M = 3.2 \times 10^{-9} M$

 $[Ag^{+}(aq)] = 3.2 \times 10^{-9} M \qquad [Cl^{-}(aq)] = 0.056 M \qquad [Na^{+}(aq)] = 0.086 M$