Marks 4

• Assuming ideal behaviour, calculate the mass of $MgCl_2 \cdot 6H_2O$ that should be dissolved in 1.0 L of water at 37 °C to obtain a solution with an osmotic pressure of 6.0 atm, the same as that of cell cytoplasm.

The molar mass of MgCl₂·6H₂O is:

 $(24.31 (Mg) + 2 \times 35.45 (Cl) + 12 \times 1.008 (H) + 6 \times 16.00 (O)) \text{ g mol}^{-1}$

$$= 203.3 \text{ g mol}^{-1}$$

An osmotic pressure of 6.0 atm corresponds to (6.0×101.3) kPa = 607.8 kPa.

The osmotic pressure, Π , is given by $\Pi = cRT$. Hence, the concentration, c_{\downarrow} required is:

$$c = \Pi / RT = (607.8 \times 10^3 \text{ Pa}) / (8.314 \text{ m}^3 \text{ Pa K}^{-1} \text{ mol}^{-1} \times ((37 + 273) \text{ K}))$$

= 0.236 M

 $MgCl_2 \cdot 6H_2O$ dissolves to give $Mg^{2+} + 2Cl^-$: three particles per mole. Hence, the number of moles of $MgCl_2 \cdot 6H_2O$ required to give this concentration of particles in 1.0 L is:

number of moles = 0.236 / 3 mol = 0.0786 mol

Hence, the mass of MgCl₂·6H₂O required is:

mass = number of moles \times molar mass = 0.0786 mol \times 203.3 g mol⁻¹ = 16 g

Answer: 16 g