Tris(hydroxymethyl)aminomethane is commonly used to make buffer solutions. It has a base ionisation constant of 1.26×10^{-6} . What is the pH of a 0.05 M agueous solution of this compound?

Marks 3

The base ionization constant refers to the reaction below for which the reaction table is:

	tris	+ H ₂ O	-	trisH ⁺	OH.
Initial	0.05			0	0
Change	-x			+x	+x
Equilibrium	0.05 - x			x	x

As $pK_b = -\log_{10}K_b$, at equilibrium,

$$K_{\rm b} = \frac{[{\rm trisH}^+][{\rm OH}^-]}{[{\rm tris}]} = \frac{(x)(x)}{(0.05 - x)} = \frac{x^2}{(0.05 - x)} = 1.26 \times 10^{-6}$$

As K_b is so small, x will be tiny and $0.05 - x \sim 0.05$ and so

$$x^2 = 1.26 \times 10^{-6} \times 0.05$$
 or $x = [OH^-] = 2.5 \times 10^{-4} M$

Hence, pOH =
$$-\log_{10}[OH^{-}] = -\log_{10}(2.5 \times 10^{-4}) = 3.60$$
 and so:

$$pH = 14.00 - pOH = 10.4$$

Answer: 10.4

The ionisation constant of water, K_w , at 37 °C is 2.42×10^{-14} . What is the pH for a neutral solution at 37 °C?

1

By definition, $K_w = [H^+(aq)][OH^-(aq)]$. Water ionizes to produce equal amounts of $H^{+}(aq)$ and $OH^{-}(aq)$. Let $[H^{+}(aq)] = [OH^{-}(aq)] = y$:

$$K_{\rm w} = (y)(y) = y^2 = 2.42 \times 10^{-14}$$

 $y = 1.56 \times 10^{-7} \,\mathrm{M} = [\mathrm{H}^+(\mathrm{aq})]$

$$pH = -log_{10}[H^{+}(aq)] = -log_{10}(1.56 \times 10^{-7}) = 6.81$$

Answer: 6.81