Marks

2

• Will AgCl precipitate if solutions of 25.0 mL of 2.0×10^{-5} M KCl and 75.0 mL of 1×10^{-5} M AgNO₃ are added to one another? Show your reasoning. K_{sp} for AgCl = 1.8×10^{-10} at 25 °C.

After mixing the solution has a volume of (25.0 + 75.0) mL = 100.0 mL. Using $c_1V_1 = c_2V_2$, this leads to Ag⁺ and Cl⁻ concentrations of:

 $[Ag^{+}(aq)] = (75.0 / 100.0) \times 1 \times 10^{-5} M = 7.5 \times 10^{-6} M$

 $[Cl^{-}(aq)] = (25.0 / 100.0) \times 2.0 \times 10^{-5} M = 5 \times 10^{-5} M$

AgCl(s) dissolves to give $Ag^+(aq) + Cl^-(aq)$ with the ionic product, Q_{sp} :

 $Q_{\rm sp} = [{\rm Ag}^+({\rm aq})][{\rm Cl}^-({\rm aq})] = (7.5 \times 10^{-6}) \times (5 \times 10^{-5}) = 4 \times 10^{-11}$

As $Q_{sp} \ll K_{sp}$, there will be no precipitate.

Answer: No precipitate forms