• Nitroglycerine, C₃H₅(NO₃)₃, decomposes to form N₂, O₂, CO₂ and H₂O according to the following equation.

Marks 4

$$4C_3H_5(NO_3)_3(1) \rightarrow 6N_2(g) + O_2(g) + 12CO_2(g) + 10H_2O(g)$$

If 15.6 kJ of energy is evolved by the decomposition of 2.50 g of nitroglycerine at 1 atm and 25 °C, calculate the enthalpy change, ΔH° , for the decomposition of 1.00 mol of this compound under standard conditions.

Answer:

Hence calculate the enthalpy of formation of nitroglycerine under standard conditions.

Data:		$\Delta_{\rm f} H^{\circ} ({\rm kJ~mol}^{-1})$
	$H_2O(g)$	-242
	CO ₂ (g)	-394

Answer: