• Calculate ΔG° for the following reaction:

$$3Cu(s) + Cr^{3+}(aq) \implies 3Cu^{+}(aq) + Cr(s)$$

The two electrode potentials are:

Cu(s) \Rightarrow Cu⁺(aq) + e⁻ $E_{ox}^{\circ} = -0.53 \text{ V}$ Cr³⁺(aq) +3e⁻ \Rightarrow Cr(s) $E_{red}^{\circ} = -0.74 \text{ V}$

The overall cell potential is therefore:

 $E^{\circ} = E_{ox}^{\circ} + E_{red}^{\circ} = (-0.53 \text{ V}) + (-0.74 \text{ V}) = -1.27 \text{ V}$

Using $\Delta G^{\circ} = -nFE^{\circ}$ for this 3 electron transfer reaction:

 $\Delta G^{\circ} = -(3 \times 96485 \text{ C mol}^{-1}) \times (-1.27 \text{ V}) = +368 \text{ kJ mol}^{-1}$

Answer: +368 kJ mol⁻¹

Is the reaction spontaneous under standard conditions? Give a reason for your answer.

No. $\Delta G^{\circ} > 0$ and it must be negative for a spontaneous reaction. Equivalently, $E^{\circ} < 1$ and it must be positive for a spontaneous reaction. Marks 3