- A bar of hot iron with a mass of 1.000 kg and a temperature of $100.00^{\circ} \mathrm{C}$ is plunged into an insulated tank of water. The mass of water was 2.000 kg and its initial temperature was $25.00{ }^{\circ} \mathrm{C}$. What will the temperature of the resulting system be when it has stabilised? (The specific heat capacities of water and iron are $4.184 \mathrm{~J} \mathrm{~g}^{-1}$ K^{-1} and $0.4498 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$, respectively.)

The heat lost by the iron is equal to the heat gained by the water.
The heat change is related to the temperature change through $q=m C \Delta T$ where m is the mass of the substance and \boldsymbol{C} is its specific heat capacity.

For the water,

$$
\begin{aligned}
q=m_{\mathrm{H}_{2} \mathrm{O}} C_{\mathrm{H}_{2} \mathrm{O}} \Delta T_{\mathrm{H}_{2} \mathrm{O}} & =\left(2.000 \times 10^{3} \mathrm{~g}\right) \times\left(4.184 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-25.00\right) \mathrm{K}\right) \\
& =\left(8.368 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-25.00\right) \mathrm{K}\right)
\end{aligned}
$$

For the iron,

$$
\left.\begin{array}{rl}
q=m_{\mathrm{Fe}} C_{\mathrm{Fe}} \Delta T_{\mathrm{Fe}} & =\left(1.000 \times 10^{3} \mathrm{~g}\right) \times\left(0.4498 \mathrm{~J} \mathrm{~g}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-100.00\right) \mathrm{K}\right) \\
& =\left(0.4498 \times 10^{3} \mathrm{~J} \mathrm{~K}\right.
\end{array}\right) \times\left(\left(T_{\mathrm{f}}-100.00\right) \mathrm{K}\right) .
$$

Hence, as $\boldsymbol{q}_{\text {water }}=-\boldsymbol{q}_{\text {iron }}$:

$$
\begin{aligned}
& \left(8.368 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-\mathbf{2 5 . 0 0}\right) \mathrm{K}\right)=-\left(0.4498 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1}\right) \times\left(\left(T_{\mathrm{f}}-100.00\right) \mathrm{K}\right) \\
& T_{\mathrm{f}}=28.83{ }^{\circ} \mathrm{C}
\end{aligned}
$$

