CHEM1612 2010-N-4 November 2010

• A cylinder fitted with a piston contains $5.00 \, \text{L}$ of a gas at a pressure of $4.0 \times 10^5 \, \text{Pa}$. The entire apparatus is maintained at a constant temperature of $25 \, ^{\circ}\text{C}$. The piston is released and the gas expands against a pressure of $1.0 \times 10^5 \, \text{Pa}$. Assuming ideal gas behaviour, calculate the final volume occupied by the gas.

Marks 3

As the number of moles and the temperature is constant, the initial and final pressures and volumes are related by:

$$V_1P_1 = V_2P_2$$

Hence,

$$V_2 = V_1 P_1 / P_2 = (5.00 \text{ L}) \times (4.0 \times 10^5 \text{ Pa}) / (1.0 \times 10^5 \text{ Pa}) = 20. \text{ L}$$

Answer: 20. L

Calculate the amount of work done by the gas expansion.

The gas expands from 5.00 to 20. L: it expands by 15 L. As 1 $m^3 = 1000$ L, this corresponds to 15×10^{-3} m^3 .

The work done by a gas expanding against an external pressure is given by:

$$W = -P_{ext} \Delta V = -(1.0 \times 10^5 \text{ Pa}) \times (15 \times 10^{-3} \text{ m}^3) = -1.5 \times 10^3 \text{ J}$$

Answer: -1.5×10^3 J