• Consider the following reaction.

 $SO_2(g) + NO_2(g) \implies NO(g) + SO_3(g)$

At 460 °C this reaction has a value of $K_c = 85.0$. Suppose 0.100 mol of SO₂, 0.0600 mol of NO₂, 0.0800 mol of NO and 0.120 mol of SO₃ are placed in a 10.0 L container at this temperature. What are the concentrations of all of the gases when the system reaches equilibrium?

The initial concentrations are:

 $[SO_2(g)] =$ number of moles / volume = (0.100 mol) / (10.0 L) = 0.0100 M

 $[NO_2(g)] = (0.0600 \text{ mol}) / (10.0 \text{ L}) = 0.00600 \text{ M}$

[NO(g)] = (0.0800 mol) / (10.0 L) = 0.00800 M

 $[SO_3(g)] = (0.120 \text{ mol}) / (10.0 \text{ L}) = 0.0120 \text{ M}$

The reaction quotient can be used to predict the direction that the reaction will shift:

$$Q = \frac{[\mathrm{NO}(\mathrm{g})][\mathrm{SO}_3(\mathrm{g})]}{[\mathrm{SO}_2(\mathrm{g})][\mathrm{NO}_2(\mathrm{g})]} = \frac{(0.0120)(0.00800)}{(0.0100)(0.00600)} = 1.6$$

As Q < K, the reaction will shift to the right – to increase the amount of products and decrease the amount of reactants. The reaction table is then:

	SO ₂ (g)	NO ₂ (g)	-	NO(g)	SO ₃ (g)
initial	0.0100	0.00600		0.00800	0.0120
change	- <i>x</i>	- <i>x</i>		+ <i>x</i>	+x
equilibrium	0.0100 - x	0.00600 - x		0.00800 + x	0.0120 + x

Hence,

$$K = \frac{(0.00800 + x)(0.0120 + x)}{(0.0100 - x)(0.00600 - x)} = 85.0$$

 $85.0(x^2 - 0.01600x + 0.0000600) = x^2 + 0.02000x + 0.000096$

 $84.0x^2 - 1.38x + 0.005004 = 0$

Solving this quadratic equation gives x = 0.0054 and 0.011. The second root is not possible, as it leads to negative concentrations for the reactants.

Using x = 0.0054 M gives,

 $[SO_2(g)] = (0.0100 - 0.0054) M = 0.00460 M$ $[NO_2(g)] = (0.00600 - 0.0054) M = 0.000597 M$ [NO(g)] = (0.00800 + 0.0054) M = 0.0134 M $[SO_3(g)] = (0.0120 + 0.0054) M = 0.0174 M$

$[SO_2(g)] = 0.00460 M$	[NO ₂ (g)] = 0.000597 M			
$[SO_3(g)] = 0.0174 M$	[NO(g)] = 0.0134 M			

Marks 5