• Calculate ΔG° for the reaction:

$$2N_2O(g) + 3O_2(g) \rightarrow 4NO_2(g)$$

Marks 2

Data:

$$4NO(g) \rightarrow 2N_2O(g) + O_2(g)$$

$$\Delta G^{\circ} = -139.56 \text{ kJ mol}^{-1}$$

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$$

$$\Delta G^{\circ} = -69.70 \text{ kJ mol}^{-1}$$

Answer:

• Good wine will turn to vinegar if it is left exposed to air because the alcohol is oxidised to acetic acid. The equation for the reaction is:

 $CH_3CH_2OH(1) + O_2(g) \rightarrow CH_3COOH(1) + H_2O(1)$

Calculate ΔS° for this reaction in J K⁻¹ mol⁻¹.

Data:		S° (J K ⁻¹ mol ⁻¹)		S° (J K ⁻¹ mol ⁻¹)
	$C_2H_5OH(1)$	161	CH ₃ COOH(l)	160.
	$O_2(g)$	205.0	H ₂ O(1)	69.96

2

Answer: