- Marks 4
- Buffer 1 is a solution containing 0.08 M NH₄Cl and 0.12 M NH₃. Buffer 2 is a solution containing 0.15 M NH₄Cl and 0.05 M NH₃. The acid dissociation constant of the ammonium ion is 5.50×10^{-10} . What are the pH values of each of the buffer solutions?

By definition, $pK_a = -\log_{10}K_a$ so:

 $pK_a = -\log_{10}(5.50 \times 10^{-10}) = 9.26$

Using the Henderson-Hasselbalch equation,

 $\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log \frac{[\mathsf{base}]}{[\mathsf{acid}]} = 9.290 + \log \frac{[\mathsf{NH}_3]}{[\mathsf{NH}_3\mathsf{CI}]}$

For buffer 1:

$$pH = 9.26 + \log \frac{0.12}{0.08} = 9.44$$

For buffer 2:

$$pH = 9.26 + \log \frac{0.05}{0.15} = 8.78$$

Buffer 1 pH = **9.44**

Buffer 2 pH = **8.78**

Which buffer is better able to maintain a steady pH on the addition of small amounts of both a strong acid and strong base? Explain.

Buffer 1 is better able to maintain a steady pH because its pH is closer to the pK_a of NH_4^+ . This is because it has relatively high concentrations of both NH_4^+ and NH_3 which can react with any added OH^- or H^+ respectively.