• Order the following salts from lowest to highest molar solubility.

Marks

4

Salt	CuCl	$Cd(IO_3)_2$	BaSO ₄	Ag ₂ CrO ₄
$K_{ m sp}$	1.9×10^{-7}	$2.3 imes 10^{-8}$	1.1×10^{-10}	2.6×10^{-12}

(1) For CuCl, K_{sp} refers to the dissolution reaction:

$$CuCl(s) \iff Cu^{+}(aq) + Cl^{-}(aq) \qquad K_{sp} = [Cu^{+}(aq)][Cl^{-}(aq)]$$

If the solubility is x mol L⁻¹ then x mol of CuCl(s) dissolves in one litre. From the dissolution equation, this leads to $[Cu^+(aq)] = x$ M and $[C\Gamma(aq)] = x$ M. Hence,

$$K_{\rm sp} = (x)(x) = x^2 = 1.9 \times 10^{-7}$$
 or $x = (1.9 \times 10^{-7})^{1/2}$ M = 4.4 × 10⁻⁴ M

(2) For $Cd(IO_3)_2$, K_{sp} refers to the dissolution reaction:

$$Cd(IO_3)_2(s) \iff Cd^{2+}(aq) + 2IO_3(aq) \quad K_{sp} = [Cd^{2+}(aq)][IO_3(aq)]^2$$

If the solubility is x mol L⁻¹ then x mol of Cd(IO₃)₂ (s) dissolves in one litre. From the dissolution equation, this leads to $[Cd^{2+}(aq)] = x M$ and $[IO_3^-(aq)] = x M$. Hence,

$$K_{\rm sp} = (x)(2x)^2 = 4x^3 = 2.3 \times 10^{-8}$$
 or $x = (2.3 \times 10^{-8} / 4)^{1/3}$ M = 1.8×10^{-3} M

(3) For BaSO₄, K_{sp} refers to the dissolution reaction:

BaSO₄(s)
$$\implies$$
 Ba²⁺(aq) + SO₄²⁻(aq) $K_{sp} = [Ba^{2+}(aq)][SO_4^{2-}(aq)]$

If the solubility is x mol L⁻¹ then x mol of BaSO₄(s) dissolves in one litre. From the dissolution equation, this leads to $[Ba^{2+}(aq)] = x M$ and $[SO_4^{2-}(aq)] = x M$. Hence,

$$K_{\rm sp} = (x)(x) = x^2 = 1.1 \times 10^{-10}$$
 or $x = (1.1 \times 10^{-10})^{1/2}$ M = 1.0×10^{-5} M

(4) For Ag_2CrO_4 , K_{sp} refers to the dissolution reaction:

$$Ag_2SO_4(s) \implies 2Ag^+(aq) + CrO_4^{2-}(aq) \quad K_{sp} = [Ag^+(aq)]^2 [CrO_4^{2-}(aq)]$$

If the solubility is x mol L^{-1} then x mol of Ag₂CrO₄(s) dissolves in one litre. From the dissolution equation, this leads to $[Ag^+(aq)] = 2x M$ and $[CrO_4^{2-}(aq)] = x M$. Hence,

$$K_{\rm sp} = (2x)^2(x) = 4x^3 = 2.6 \times 10^{-12}$$
 or $x = (2.6 \times 10^{-12} / 4)^{1/2}$ M = 8.7 × 10⁻⁵ M

Overall, solubility increases in the order:

 $BaSO_4 < Ag_2CrO_4 < CuCl < Cd(IO_3)_2$