- 3
- Give the equilibrium concentration of Ni²⁺(aq) ions in a solution formed by dissolving 0.15 mol of NiCl₂ in 0.500 L of 2.00 M KCN solution. The K_{stab} of [Ni(CN)₄]²⁻ = 1.7×10^{30} .

When the NiCl₂ is added to 0.500 L, the concentration of Ni²⁺(aq):

concentration = [Ni²⁺(aq)] = number of moles / volume = 0.15 mol / 0.500 L = 0.30 M

As K_{stab} is so large, essentially *all* of this will be complexed by the excess CN⁻(aq) ions:

 $Ni^{2+}(aq) + 4CN^{-}(aq) \implies [Ni(CN)_4^{2-}(aq)]$

As essentially all of the Ni²⁺(aq) becomes [Ni(CN)₄²⁻(aq)]:

 $[Ni(CN)_4^{2-}(aq)] = 0.30 \text{ M}$ $[CN^{-}(aq)] = (2.00 - 4 \times 0.30) \text{ M} = 0.80 \text{ M}$

 K_{stab} is the equilibrium constant for the reaction so:

 $K_{\text{stab}} = \frac{[\text{Ni}(\text{CN})_4^{2-}(\text{aq})]}{[\text{Ni}^{2+}(\text{aq})][\text{CN}^{-}(\text{aq})]^4}$

If the *tiny* amount of uncomplexed $Ni^{2+}(aq)$ has a concentration of x M then:

 $K_{\text{stab}} = \frac{(0.30)}{(x)(0.80)^4} = 1.7 \times 10^{30}$ so $x = 4.3 \times 10^{-31}$ M

Answer: 4.3×10^{-31} M