Marks • Copper metal can be obtained by heating copper oxide, CuO, in the presence of 2 carbon monoxide, CO, according to the following reaction. $CuO(s) + CO(g) \rightarrow Cu(s) + CO_2(g)$ Calculate ΔH° for this reaction in kJ mol⁻¹. $\Delta H^{\circ} = -566.1 \text{ kJ mol}^{-1}$ Data: $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ $2Cu(s) + O_2(g) \rightarrow 2CuO(s)$ $\Delta H^{\circ} = -310.5 \text{ kJ mol}^{-1}$ Answer: • Acetylene burns in air according to the following equation: 2 $C_2H_2(g) + {}^{5}/{}_{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(g) \qquad \Delta H^{\circ} = -1255.8 \text{ kJ mol}^{-1}$ The $\Delta_{\rm f} H^{\circ}$ of CO₂(g) = -393.5 kJ mol⁻¹, $\Delta_{\rm f} H^{\circ}$ of H₂O(1) = -285.8 kJ mol⁻¹ and $\Delta_{\text{vap}}H^{\circ}$ of H₂O(l) = +44.0 kJ mol⁻¹. What is $\Delta_{\text{f}}H^{\circ}$ of C₂H₂(g)? Answer: