•	The following	reaction is	run from 4	different	starting positions	5.
	The following	reaction is	run nom i	uniterent	suiting positions	· ·

$H_2SeO_3 + 6I^- + 4H^- \rightarrow Se + 2I_3^- + 3H_2O$									
Experiment	Initial [H ₂ SeO ₃] (mol L ⁻¹)	Initial $[I^-]$ (mol L^{-1})	Initial $[H^+]$ (mol L^{-1})	Initial rate of increase of $[I_3^-]$ (mol L ⁻¹ s ⁻¹)					
1	0.100	0.100	0.100	1.000					
2	0.100	0.075	0.100	0.422					
3	0.075	0.100	0.100	0.750					
4	0.100	0.075	0.075	0.237					

Determine the rate law for the reaction.

The rate law is of the form:

 $rate = k[H_2SeO_3]^x[I^-]^y[H^+]^z$

Between experiments (1) and (3), $[I^-]$ and $[H^+]$ are both constant. The change in rate is due to the change in $[H_2SeO_3]$:

$$\frac{\operatorname{rate}(3)}{\operatorname{rate}(1)} = \frac{k(0.075)^{x}(0.100)^{\frac{y}{2}}(0.100)^{\frac{x}{2}}}{k(0.100)^{x}(0.100)^{\frac{y}{2}}(0.100)^{\frac{x}{2}}} = \frac{(0.075)^{x}}{(0.100)^{x}} = \frac{0.750}{1.000} \text{ so } x = 1$$

Between experiments (1) and (2), $[H_2SeO_3]$ and $[H^+]$ are both constant. The change in rate is due to the change in $[I^-]$:

$$\frac{\text{rate }(2)}{\text{rate }(1)} = \frac{k(0.100)^{\underline{x}}(0.075)^{y}(0.100)^{\underline{x}}}{k(0.100)^{\underline{x}}(0.100)^{y}(0.100)^{\underline{x}}} = \frac{(0.075)^{y}}{(0.100)^{y}} = \frac{0.422}{1.000} \text{ so } y = 3$$

Between experiments (2) and (4), $[H_2SeO_3]$ and $[\Gamma]$ are both constant. The change in rate is due to the change in $[H^+]$:

$$\frac{\operatorname{rate}(4)}{\operatorname{rate}(2)} = \frac{k(0.100)^{\frac{2}{3}}(0.075)^{\frac{2}{3}}}{k(0.100)^{\frac{2}{3}}(0.075)^{\frac{2}{3}}} = \frac{(0.075)^{z}}{(0.100)^{z}} = \frac{0.237}{0.422} \text{ so } z = 2$$

Overall:

 $rate = k[H_2SeO_3][I^-]^3[H^+]^2$

What is the value of the rate constant?

Using, for example, experiment (1), the initial rate of increase of $[I_3^-] = 1.000$ mol $L^{-1} s^{-1}$. As $2I_3^-$ are produced in the reaction:

rate of reaction = $\frac{1}{2}$ × rate of increase of I_3^- = 0.5000 mol L⁻¹ s⁻¹

Marks 4 $rate = k[H_2SeO_3][\Gamma]^3[H^+]^2$ = k (0.100 mol L⁻¹)(0.100 mol L⁻¹)^3(0.100 mol⁻¹)^2 = 0.5000 mol L⁻¹ s⁻¹ Hence: k = (0.5000 mol L⁻¹ s⁻¹) / (1.00 × 10⁻⁶ mol⁶ L⁻⁶) = 5.00 × 10⁵ L⁵ mol⁻⁵ s⁻¹ Answer: 5.00 × 10⁵ L⁵ mol⁻⁵ s⁻¹