- Marks
 - 5
- Calcium carbide, CaC_2 , reacts with water to produce a gas and a solution containing OH⁻ ions. A sample of CaC₂ was treated with excess water and the resulting gas was collected in an evacuated 5.00 L glass bulb. At the completion of the reaction, the pressure inside the bulb was 1.00×10^5 Pa at a temperature of 26.8 °C. Calculate the amount (in mol) of the gas produced.

5.00 L corresponds to 5.00×10^{-3} m³ and 26.8 °C corresponds to (26.8 + 273.0) K = 299.8 K. Using the ideal gas law:

$$PV = nRT$$

n = PV / RT= (1.00 ×10⁵ Pa)(5.00 × 10⁻³ m³) / ((8.314 Pa m³ mol⁻¹ K⁻¹)(299.8 K)) = 0.201 mol

Answer: 0.201 mol

Given that the mass of the gas collected was 5.21 g, show that the molar mass of the gas is 25.9 g mol^{-1} .

As the number of moles = mass / molar mass:

molar mass = mass / number of moles = $5.21 \text{ g} / 0.201 \text{ mol} = 25.9 \text{ g mol}^{-1}$

Suggest a molecular formula for the gas and write a balanced equation for the reaction that occurred.

As the gas was produced from CaC_2 which contains C_2^{2-} , a likely formula is C_2H_2 :

molar mass = $(2 \times 12.01 \text{ (C)} + 2 \times 1.008 \text{ (H)}) \text{ g mol}^{-1} = 26.0 \text{ g mol}^{-1}$

This is formed by addition of H₂O:

 $CaC_2(s) + 2H_2O(l) \rightarrow Ca^{2+}(aq) + 2OH^{-}(aq) + C_2H_2(g)$