• The K_{sp} of AgBr is 5.0×10^{-13} . The K_{stab} of $[Ag(S_2O_3)_2]^{3-}$ is 4.7×10^{13} . Calculate the value of the equilibrium constant for the dissolution of AgBr in Na₂S₂O₃ solution.

Marks 7

The reactions corresponds to K_{sp} and K_{stab} can be added together to give the reaction
for the dissolution of AgBr in Na ₂ S ₂ O ₃ solution:

AgBr(s)Ag⁺(aq) + Br⁻(aq) $K_{sp} = 5.0 \times 10^{-13}$ Ag⁺(aq) + 2S₂O₃²⁻(aq) $\models [Ag(S_2O_3)_2]^{3-}(aq)$ $K_{stab} = 4.7 \times 10^{13}$

AgBr(s) + 2S₂O₃²⁻(aq) $\implies [Ag(S_2O_3)_2]^{3-}(aq) + Br^{-}(aq)$ $K = K_{sp} \times K_{stab}$

The equilibrium constant for the overall reaction is the product of the equilibrium constants for the individual reactions:

$$K = K_{\rm sp} \times K_{\rm stab} = (5.0 \times 10^{-13}) \times (4.7 \times 10^{13}) = 24$$

Answer: 24

Calculate the solubility of AgBr in 2.0 M Na₂S₂O₃.

The solubility can be calculated using a reaction table, assuming x mol dissolves:

	AgBr(s)	$2S_2O_3^{2-}(aq)$	 $[Ag(S_2O_3)_2]^{3-}(aq)$	Br ⁻ (aq)
initial	excess	2.0	0	0
change	- <i>x</i>	-2 <i>x</i>	+x	+x
final	excess	2.0 - 2x	x	x

$$K = \frac{[\mathrm{Ag}(\mathrm{S}_2\mathrm{O}_3)_2]^{3-}(\mathrm{aq})][\mathrm{Br}^-(\mathrm{aq})]}{[\mathrm{S}_2\mathrm{O}_3^{2-}(\mathrm{aq})]^2}$$
$$= \frac{(x)(x)}{(2.0-2x)^2} = \frac{x^2}{(2.0-2x)^2} = 24$$

Taking square roots of both sides gives:

$$\frac{x}{(2.0-2x)} = (24)^{1/2} \qquad x = 0.91 \text{ mol } \text{L}^{-1}$$

Answer: 0.91 mol L⁻¹

The K_{stab} for $[\text{Ag}(\text{S}_2\text{O}_3)_2]^{3-}$ is much greater than the K_{stab} for $[\text{Ag}(\text{NH}_3)_2]^+$. Explain why this is so.

 $S_2O_3^{2-}$ is a stronger ligand than NH₃, presumably because of its negative charge.