• An electrochemical cell is consists of 1.0 L half-cells of Fe/Fe^{2+} and Cd/Cd^{2+} with the

following initial concentrations: $[Fe^{2+}] = 0.800 \text{ M}, [Cd^{2+}] = 0.200 \text{ M}.$

Marks

8

What is the initial E_{cell} at 25 °C?

From the reduction potential table,

 E_{cell}^{0} (Fe²⁺(aq) + e⁻ \rightarrow Fe(s)) = -0.44 V E_{cell}^{0} (Cd²⁺(aq) + e⁻ \rightarrow Cd²⁺(aq)) = -0.40 V

The Fe^{2+}/Fe half cell has the more negative reduction potential so it is the half cell that is turned around to act as the oxidation half cell: E_{cell}° (Fe(s) \rightarrow Fe²⁺(aq) $+ e^{-}$) = +0.44 V

In combination with the Cd²⁺/Cd reduction half cell, this gives an overall reaction and cell potential of:

$$Fe(s) + Cd^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cd(s)$$
 $E^{0} = ((+0.44) + (-0.40)) V = +0.04 V$

For this reaction with $[Fe^{2+}(aq)] = 0.800 \text{ M}$ and $[Cd^{2+}(aq)] = 0.200 \text{ M}$:

$$Q = \frac{[\mathrm{Fe}^{2+}(\mathrm{aq})]}{[\mathrm{Cd}^{2+}(\mathrm{aq})]} = \frac{0.800}{0.200}$$

For the 2e⁻ reaction, the Nernst equation gives the cell potential as:

$$E_{\text{cell}} = E^{\circ} - \frac{RT}{nF} \ln Q$$

= (0.04 V) - $\frac{(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K})}{(2 \times 96485 \text{ C mol}^{-1})} \ln \frac{0.800}{0.200} = +0.02 \text{ V}$

Answer: +0.02 V

What is E_{cell} when [Cd²⁺] reaches 0.15 M?

 $[Cd^{2+}(aq)]$ has decreased from 0.200 M to 0.15 M: a change of 0.05 M. $[Fe^{2+}(aq)]$ will increase by the same amount: $[Fe^{2+}(aq)] = (0.800 + 0.05) M = 0.85 M$. Using the Nernst equation again gives:

$$E_{\text{cell}} = E^{\circ} - \frac{RT}{nF} \ln Q$$

= (0.04 V) - $\frac{(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K})}{(2 \times 96485 \text{ C mol}^{-1})} \ln \frac{0.85}{0.15} = +0.02 \text{ V}$

Answer: +0.02 V

ANSWER CONTINUES ON THE NEXT PAGE

What is $[Cd^{2+}]$ when E_{cell} reaches 0.015 V?

$$E_{\text{cell}} = (0.04 \text{ V}) - \frac{(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K})}{(2 \times 96485 \text{ C mol}^{-1})} \ln \frac{[\text{Fe}^{2+}(\text{aq})]}{[\text{Cd}^{2+}(\text{aq})]} = +0.015 \text{ V}$$

so:

$$\frac{[\text{Fe}^{2+}(aq)]}{[\text{Cd}^{2+}(aq)]} = 7.0$$

If the change from the initial concentrations is x, $[Cd^{2+}(aq)] = (0.200 - x) M$ and $[Fe^{2+}(aq)] = (0.800 + x) M$:

$$\frac{0.800 - x}{0.200 + x} = 7.0 \qquad \qquad x = -0.075 \text{ M}$$

So that $[Cd^{2+}(aq)] = (0.200 - 0.075) M = 0.125 M.$

Answer: 0.125 M

What are the equilibrium concentrations of both ions?

Using
$$E^\circ = \frac{RT}{nF} \ln K = 0.04$$
 V gives $K = 22.5$

so:

$$\frac{[Fe^{2+}(aq)]}{[Cd^{2+}(aq)]} = 22.5$$

If the change from the initial concentrations is x, $[Cd^{2+}(aq)] = (0.200 - x)$ M and $[Fe^{2+}(aq)] = (0.800 + x)$ M:

 $\frac{0.800 - x}{0.200 + x} = 22.5 \qquad \qquad x = 0.158 \text{ M}$

So that $[Cd^{2+}(aq)] = (0.200 - 0.158) M = 0.042 M and [Fe^{2+}(aq)] = (0.800 + 0.158) M = 0.958 M$

$[Cd^{2+}] = 0.042 M$	$[\mathrm{Fe}^{2+}] = 0.958 \mathrm{M}$
-----------------------	---