• At a certain temperature the following data were collected for the reaction shown.

Marks 4

$$2IC1 + H_2 \rightarrow I_2 + 2HC1$$

Experiment	Initial [ICl] (mol L ⁻¹)	Initial [H ₂] (mol L ⁻¹)	Rate of formation of $[I_2]$ $(\text{mol } L^{-1} \text{ s}^{-1})$
1	0.10	0.10	0.0015
2	0.20	0.10	0.0030
3	0.10	0.050	0.00075

Determine the rate law for the reaction.

Between experiments (1) and (2), [ICI] is doubled and $[H_2]$ is constant. This change leads to a doubling of the rate: the rate is proportional to [ICI].

Between experiments (1) and (3), [ICI] is constant and $[H_2]$ is halved. This change leads to a halving of the rate: the rate is proportional to $[H_2]$.

Overall:

rate =
$$k[ICI][H_2]$$

What is the value of the rate constant?

Using experiment (1), rate = $0.0015 \text{ mol } L^{-1} \text{ s}^{-1}$, [ICl] = $0.10 \text{ mol } L^{-1}$ and [H₂] = $0.10 \text{ mol } L^{-1}$:

rate =
$$k[IC1][H_2] = k(0.10 \text{ mol } L^{-1})(0.10 \text{ mol } L^{-1}) = 0.0015 \text{ mol } L^{-1} \text{ s}^1$$

$$k = (0.0015 \text{ mol } \text{L}^{-1} \text{ s}^{-1}) / (0.10 \text{ mol } \text{L}^{1})(0.10 \text{ mol } \text{L}^{-1}) = 0.15 \text{ L mol}^{-1} \text{ s}^{-1}$$

Answer: **0.15** L mol⁻¹ s⁻¹

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.