• Phenylketonuria is an inherited disorder in which phenylacetic acid, $C_6H_5CH_2COOH$, (simplified here to HPAc) accumulates in the blood. A study of the acid shows that the pH of a 0.12 M HPAc solution is 2.60. What is the p K_a of phenylacetic acid?

As HPAc is a weak acid, the equilibrium for its dissociation can be studied using an 'ICE' table:

	HPAc	+	PAc ⁻	\mathbf{H}^{+}
initial	0.12		0	0
change	- <i>x</i>		+x	+x
final	0.12 - x		x	x

By definition, pH = $-\log_{10}[H^+(aq)]$ so $[H^+(aq)] = 10^{-2.60}$ M. From the reaction table, $x = [H^+(aq)]_{eq}$ so:

 $[HPAc]_{eq} = 0.12 - x = (0.12 - 10^{-2.60}) M = 0.12 M (to 2 s.f.)$ [H⁺(aq)]_{eq} = x = 10^{-2.60} M [PAc⁻(aq)]_{eq} = x = 10^{-2.60} M

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm HPac}^-][{\rm H}^+]}{[{\rm HPAc}]} = \frac{(10^{-2.60})(10^{-2.60})}{(0.12)} = 5.26 \times 10^{-5}$$

By definition, $pK_a = -\log_{10}K_a$ so:

 $pK_a = -\log_{10}(5.26 \times 10^{-5}) = 4.28$

Answer: 4.28