- Marks 3
- The freezing point of a sample of seawater is measured as -2.15 °C at 1 atm pressure. Assuming that the concentrations of other solutes are negligible, determine the molality (in mol kg⁻¹) of NaCl in this sample. The molal freezing point depression constant for H₂O is 1.86 °C kg mol⁻¹. The freezing point depression, ΔT_f , is given by, $\Delta T_f = K_f m$ where K_f is the molal freezing point depression and m is the molality. The molality is the number of moles of ions dissolved in a kilogram of solvent. If $\Delta T_f = 2.15$ °C and $K_f = 1.86$ °C m⁻¹: $m_{ions} = \Delta T_f / K_f = (2.15$ °C) / (1.86 °C m⁻¹) = 1.156 m⁻¹ = 1.156 mol kg⁻¹ A mole of NaCl dissolves to give two particles (Na⁺ and Cl⁻) so (1.156 / 2) mol = 0.578 mol of NaCl per kilogram of water is needed: $m_{NaCl} = 0.578$ mol kg⁻¹

Answer: 0.578 mol kg⁻¹

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.