• Consider the following reaction and associated thermochemical data?

Marks 3

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

Data:

Compound	$NO_2(g)$	$N_2O_4(g)$
$\Delta_{\rm f} H^{\circ} / {\rm kJ \ mol}^{-1}$	33	9
S° / J K ⁻¹ mol ⁻¹	240	304

What is the expression for the equilibrium constant, K_c , for this reaction?

$$K_{c} = \frac{[N_{2}O_{4}(g)]}{[NO_{2}(g)]^{2}}$$

What are the values of ΔH° and ΔS° for the reaction?

Using $\Delta H^{\circ} = \sum \Delta_f H^{\circ}$ (products) $-\sum \Delta_f H^{\circ}$ (reactants), the enthalpy change is:

$$\Delta H^{\circ} = 2\Delta_f H^{\circ} \text{(products)} - \Delta_f H^{\circ} \text{(reactants)}$$

= $(9 - 2 \times 33) \text{ kJ mol}^{-1} = -57 \text{ kJ mol}^{-1}$

Using $\Delta S^{\circ} = \sum S^{\circ}$ (products) – $\sum S^{\circ}$ (reactants), the entropy change is:

$$\Delta S^{\circ} = 2S^{\circ} (\text{products}) - S^{\circ} (\text{reactants})$$

= (304 - 2 × 240) kJ mol⁻¹ = -176 J K⁻¹ mol⁻¹

$$\Delta H^{\circ} = -57 \text{ kJ mol}^{-1}$$

$$\Delta S^{\circ} = -176 \text{ J K}^{-1} \text{ mol}^{-1}$$

What is the value of ΔG° for the reaction at 298 K?

Using $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta H^{\circ}$:

$$\Delta G^{\circ} = (-57 \times 10^{3} \text{ J mol}^{-1}) - (298 \text{ K})(-176 \text{ J K}^{-1} \text{ mol}^{-1})$$

= -5000 J mol⁻¹ = -5 kJ mol⁻¹

$$\Delta G^{\circ} = -5 \text{ kJ mol}^{-1}$$

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.