- Calcium carbide, CaC_{2}, reacts with water to produce a gas and a solution containing OH^{-}ions. A sample of CaC_{2} was treated with excess water and the resulting gas was collected in an evacuated 5.00 L glass bulb. At the completion of the reaction, the pressure inside the bulb was $1.00 \times 10^{5} \mathrm{~Pa}$ at a temperature of $26.8^{\circ} \mathrm{C}$. Calculate the amount (in mol) of the gas produced.

Answer:
Given that the mass of the gas collected was 5.21 g , show that the molar mass of the gas is $25.9 \mathrm{~g} \mathrm{~mol}^{-1}$.

Suggest a molecular formula for the gas and write a balanced equation for the reaction that occurred.

- A sample of gas is found to exert a pressure of $7.00 \times 10^{4} \mathrm{~Pa}$ when it is in a 3.00 L flask at $10.00{ }^{\circ} \mathrm{C}$. Calculate the new volume if the pressure becomes $1.01 \times 10^{5} \mathrm{~Pa}$ and the temperature is unchanged.

Calculate the new pressure if the volume becomes 2.00 L and the temperature is unchanged.

Answer:

Calculate the new pressure if the temperature is raised to $50.0^{\circ} \mathrm{C}$ and the volume is unchanged, i.e. still 3.00 L .

Answer:

- A cylinder fitted with a piston contains 5.00 L of a gas at a pressure of $4.0 \times 10^{5} \mathrm{~Pa}$.

Marks The entire apparatus is maintained at a constant temperature of $25^{\circ} \mathrm{C}$. The piston is released and the gas expands against a pressure of $1.0 \times 10^{5} \mathrm{~Pa}$. Assuming ideal gas behaviour, calculate the final volume occupied by the gas.

Calculate the amount of work done by the gas expansion.

Answer:

- The average speed of a gaseous neon atom at 300 K is $609 \mathrm{~m} \mathrm{~s}^{-1}$. What is the average speed of a helium atom at the same temperature?

- Why is helium instead of nitrogen mixed with oxygen in deep sea diving? Explain the origin of any differences in relevant properties.
- A doctor recommends to a pregnant woman that she takes an iron supplement of 50 mg (as Fe^{2+}) daily. To achieve this, what mass (to the nearest mg) of iron(II) gluconate-2-water, $\mathrm{FeC}_{12} \mathrm{H}_{22} \mathrm{O}_{14} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, would be required?
\square
- What is the mass of each of the following at 298 K and 101 kPa pressure?
(i) argon (24.5 litre)
(ii) water (24.5 litre)
(iii) chlorine (12.25 litre)
(iv) zinc (1.00 mole)

