• Explain the following terms or concepts.

Le Châtelier's principle

Marks 1

• At 700 °C, hydrogen and iodine react acc	cording to the following equation.	Marks
$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	$K_{\rm c} = 49.0$	4
If 0.250 mol of HI(g) is introduced into a concentration of $I_2(g)$ at equilibrium?	a 2.00 L flask at 700 °C, what will be the	
	Answer:	
Hydrogen also reacts with sulfur at 700 °	2°C:	
$2H_2(g) + S_2(g) \rightleftharpoons 2H_2S(g)$	(g) $K_{\rm c} = 1.075 \times 10^8$	
Determine K_c for the following overall explanation of the following overall explanation overalline overall explanation overalline	quilibrium reaction at 700 °C.	
$2I_2(g) + 2H_2S(g) \rightleftharpoons S_2(g)$	(g) + 4HI(g)	
	Answer:	

Marks • Methane, CH₄, reacts with hydrogen sulfide, H₂S, according the following 5 equilibrium: $CH_4(g) + 2H_2S(g) \iff CS_2(g) + 4H_2(g)$ In an experiment 1.00 mol of CH_4 , 2.00 mol of H_2S , 1.00 mol of CS_2 and 2.00 mol of H₂ are mixed in a 250 mL vessel at 960 °C. At this temperature, $K_c = 0.034$ (based on a standard state of 1 mol L^{-1}). Calculate the reaction quotient, Q, and hence predict in which direction the reaction will proceed to reach equilibrium? Explain your answer. Show that the system is at equilibrium when $[CH_4(g)] = 5.56$ M.

One of the most important re triphosphate (ATP) to adenos	actions in living cells is the splitting of adenosine sine diphosphate (ADP) and free phosphate (P _i):	;
1	$ATP \implies ADP + P_i$	
Based on a standard state of 1^{-33} kJ mol ⁻¹ . Calculate the v temperature.	1 M, the value of ΔG° for this reaction at 37 °C is value of the equilibrium constant for the reaction a	at this
	Answer	
The following concentrations	are typical in a living cell	
ATP: 5 mM	ADP: 0.1 mM P: 5 mM	
Jnder these conditions, calcusplitting of ATP.	ilate the energy per mole that is available from the	e
	Answer:	

- The electron transfer reaction between NADH and oxygen is a spontaneous reaction at 37 $^{\circ}\mathrm{C}$

NADH + $\frac{1}{2}O_2$ + H⁺ \rightarrow NAD⁺ + H₂O $\Delta G = -220 \text{ kJ mol}^{-1}$

When this reaction is carried out in solution in a test tube via direct mixing of NADH with dissolved oxygen, the reaction releases a significant amount of heat. However, when the reaction occurs in mitochondria during respiration, it produces very little heat. Explain why the heat evolved is much less in mitochondria.

• Consider the following reaction.

 $SO_2(g) + NO_2(g) \iff SO_3(g) + NO(g)$

An equilibrium mixture in a 1.00 L vessel was found to contain $[SO_2(g)] = 0.800$ M, $[NO_2(g)] = 0.100$ M, $[SO_3(g)] = 0.600$ M and [NO(g)] = 0.400 M. If the volume and temperature are kept constant, what amount (in mol) of NO(g) needs to be added to the reaction vessel to give an equilibrium concentration of NO₂(g) of 0.300 M?

Answer:

CHEM1612

_

•	Calcula	te ΔG° for the re	eaction: $2N_2O$	$(g) + 3O_2(g) -$	\rightarrow 4NO ₂ (g)	Marks
	Data:	$4NO(g) \rightarrow$	$2N_2O(g) + O_2(g)$	ΔG	$^{\circ} = -139.56 \text{ kJ mol}^{-1}$	2
		2NO(g) +	$O_2(g) \rightarrow 2NO_2(g)$	ΔG^{*}	$^{\circ} = -69.70 \text{ kJ mol}^{-1}$	
			A	Inswer:		
•	Good w oxidised	vine will turn to d to acetic acid.	vinegar if it is left ex The equation for the	posed to air beca reaction is:	ause the alcohol is	2
		CH ₃ CH ₂	$OH(l) + O_2(g) \rightarrow 0$	CH ₃ COOH(l) +	H ₂ O(l)	
	Calcula	te ΔS° for this re	eaction in J K ⁻¹ mol ⁻	1 •		
	Data:		S° (J K ⁻¹ mol ⁻¹)		S° (J K ⁻¹ mol ⁻¹)	
	-	C ₂ H ₅ OH(1)	161	CH ₃ COOH(1)	160.	
	-	O ₂ (g)	205.0	H ₂ O(1)	69.96	

Answer:

Marks • Consider the following reaction. 5 $SO_2(g) + NO_2(g) \implies$ $NO(g) + SO_3(g)$ At 460 °C this reaction has a value of $K_c = 85.0$. Suppose 0.100 mol of SO₂, $0.0600 \text{ mol of NO}_2$, 0.0800 mol of NO and $0.120 \text{ mol of SO}_3$ are placed in a 10.0 L container at this temperature. What are the concentrations of all of the gases when the system reaches equilibrium? $[SO_2(g)] =$ $[NO_2(g)] =$

• Consider the ammonia synthesis reaction shown below. $N_2(g) + 3H_2(g) \implies 2NH_3(g) \qquad K_c = 6.0 \times 10^{-2} \text{ at } 500 \text{ °C}$ ΔH° for this reaction is -92 kJ mol ⁻¹ . Calculate the value of K_c at 200 °C.	Marks 2
Answer:	

Explain the following terms or concepts.		Marks 3
a) Lewis acid		
		-
b) 3 rd Law of Thermodynamics		
c) Brownian motion		-
• $\Delta_{vap}H^{\circ} = 34.0 \text{ kJ mol}^{-1}$ for benzene, which entropy change for the vaporisation of ben	h has a boiling point of 80.1 °C. What is the nzene in J K^{-1} mol ⁻¹ ?	2
	Answer:	-

• A mixture of NaCl (5.0 g) the concentrations of Ag ⁺ (has been established? K _{sp} (and AgNO ₃ (5.0 g) was added aq), Cl ⁻ (aq) and Na ⁺ (aq) ions i (AgCl) = 1.8×10^{-10} .	to 1.0 L of water. What are n solution after equilibrium	Marks 3
$[Ag^{+}(aq)] =$	$[Cl^{-}(aq)] =$	$[Na^+(aq)] =$	

At 700 °C, hydrog	gen and iodine react a g) + $I_2(g) = 1$	according to th	e following equation. K = 49.0	Ma
Hydrogen also rea	$g_{1} + I_{2}(g)$	$2 \Pi(g)$	$K_{\rm c} = 49.0$	
			$K = 1.075 \times 10^8$	
2H ₂ ()	$g) + S_2(g) =$	$2H_2S(g)$	$K_{\rm c} = 1.0/5 \times 10^{\circ}$	
Determine K_c for t	the following overall	equilibrium re	eaction at 700 °C.	
	$2I_2(g) + 2H_2S(g)$	$ \longrightarrow S_2($	g) + 4HI(g)	
		$K_{\rm c} =$		
What is the standa	rd free energy chang	ze at 700 °C fo	r this overall equilibrium	
reaction?		,• / 00 0 10	· ····· · · · · · · · · · · · · · · ·	
				1

concentration of $I_2(g)$ at equilibrium?		
	Answer:	
).274 g of H ₂ S were now incentration of $S_2(g)$ at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
0.274 g of H_2S were now incentration of $S_2(g)$ at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
).274 g of H_2S were now incentration of $S_2(g)$ at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
0.274 g of H_2S were now incentration of $S_2(g)$ at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
).274 g of H_2S were now incentration of $S_2(g)$ at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
0.274 g of H ₂ S were now incentration of $S_2(g)$ at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
0.274 g of H_2S were now incentration of $S_2(g)$ at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
0.274 g of H ₂ S were now incentration of S ₂ (g) at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
0.274 g of H ₂ S were now i ncentration of S ₂ (g) at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	
0.274 g of H ₂ S were now i oncentration of S ₂ (g) at equ	Answer: ntroduced into the same flask, what would be the ilibrium?	

• Consider the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $\Delta H^\circ = -198.4 \text{ kJ mol}^{-1} \text{ and } \Delta S^\circ = -187.9 \text{ J K}^{-1} \text{ mol}^{-1} \text{ at } 25 \text{ °C.}$ Show that this reaction is spontaneous at 25 °C.	Marks 5
If the volume of the reaction system is increased at 25 °C, in which direction will the reaction move?	_
Calculate the value of the equilibrium constant, K , at 25 °C.	
K =	-
Assuming ΔH° and ΔS° are independent of temperature, in which temperature range is the reaction non-spontaneous?	
Answer:	

	_c Marks
• The first step in the metabolism of glucose in biological systems is the addition phosphate group in a dehydration-condensation reaction:	of a 6
glucose(aq) + $H_2PO_4^{-}(aq) \iff [glucose phosphate]^{-}(aq) + H_2O(l)$	
The free energy change associated with this reaction is $\Delta G^{\circ} = 13.8 \text{ kJ mol}^{-1}$. The reaction is driven forwards by harnessing the free energy associated with the hydrolysis of adenosine triphosphate, ATP^{4-} , to adenosine diphosphate, ADP^{3-} : $ATP^{4-}(aq) + H_2O(1) \implies ADP^{3-}(aq) + H_2PO_{-}(aq) = AG^{\circ} = -30.5 \text{ kJ}$	ne : mol ⁻¹
The overall reaction is thus: $ADI (aq) + H_2 I O_4 (aq) = -30.3 \text{ KJ}$	mor
glucose(aq) + $ATP^{4-}(aq) \iff [glucose phosphate]^{-}(aq) + ADP^{3-}(aq)$ Calculate the equilibrium constant associated with this overall reaction at body temperature (37 °C).)
A	
Allswer:	
This overall equilibrium reaction is investigated by adding 0.0100 mol of ATP^4 flask containing 175 mL of a 0.0500 M aqueous solution of glucose at 37 °C. W percentage of the ATP^{4-} will have been consumed when the system reaches equilibrium?	[−] to a Vhat
Answer:	
Suggest two simple ways of further reducing the remaining percentage of ATP ⁴	

Marks • Acetylene, C_2H_2 , is an important fuel in welding. It is produced in the laboratory when 3 calcium carbide, CaC₂, reacts with water: $CaC_2(s) + 2H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(s)$ For a sample of C₂H₂ collected over water, the total gas pressure was 748 mmHg and the volume was 543 mL. At the gas temperature (23 °C), the vapour pressure of water is 21 mmHg. What mass of acetylene was collected? Answer: The solubility of acetylene in water at 22.0 °C is small. If the temperature were raised, would you expect this solubility to increase or decrease?

Marks • The isomerisation of glucose-6-phosphate (G6P) to fructose-6-phosphate (F6P) is a 6 key step in the metabolism of glucose for energy. G6P → F6P At 298 K, the equilibrium constant for the isomerisation is 0.510. Calculate the value of ΔG° at 298 K. Answer: Calculate ΔG at 298 K when the [F6P] / [G6P] ratio = 10. Answer: In which direction will the reaction shift in order to establish equilibrium? Why? Sketch a graph of G_{sys} versus "extent of reaction", with a curve showing how G_{sys} varies as G6P is converted to F6P. Indicate the position on this curve corresponding to the point where [F6P] / [G6P] ratio = 10. Indicate on the graph that section of the curve where Q > K.

The CO(g) in water gas can be reacted further with $H_2O(g)$ in the so-called "water- gas shift" reaction:	Marks 4
$CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$	
At 900 K, $K_c = 1.56$ for this reaction. A sample of water gas flowing over coal at 900 K contains a 1:1 mole ratio of CO(g) and H ₂ (g), as well as 0.250 mol L ⁻¹ H ₂ O(g). This sample is placed in a sealed container at 900 K and allowed to come to equilibrium, at which point it contains 0.070 mol L ⁻¹ CO ₂ (g). What was the initial concentration of CO(g) and H ₂ (g) in the sample?	
$[CO] = [H_2] =$	
If the walls of the container are chilled to below 100 °C, what will be the effect on the concentration of $CO_2(g)$?	

•	The isomerisation of glucose-6-phosphate key step in the metabolism of glucose for	e (G6P) to fructose-6-phosphate (F6P) is a energy. At 298 K,	Marks 6
	G6P <table-cell-rows> F6P</table-cell-rows>	$\Delta G^{\circ} = 1.67 \text{ kJ mol}^{-1}$	
	Calculate the equilibrium constant for this	s process at 298 K.	
		Answer:	
	What is the free energy change (in kJ mol and 2.00 mol of G6P reaching equilibrium	I ⁻¹) involved in a mixture of 3.00 mol of F6P n at 298 K?	
		[.	
		Answer:	
Sketch a graph of G_{sys} versus "extent of reaction", with a curve showing how G_{sys} varies as G6P is converted to F6P. Indicate the position on this curve corresponding to 3.00 mol of F6P and 2.00 mol of G6P.			

Marks • A mixture of 0.500 mol of NO₂(g) and 0.500 mol of N₂O₄(g) is allowed to reach 5 equilibrium in a 10.0 L vessel maintained at 298 K. The equilibrium is described by the equation below. $\Delta H^{\circ} = -15 \text{ kJ mol}^{-1}$ for the forward reaction. $2NO_2(g) \iff N_2O_4(g)$ $K_{\rm c} = 1.2 \times 10^2 \,{\rm M}^{-1}$ Show that the system is at equilibrium when the concentration of $NO_2(g)$ is 0.023 M. Discuss the effect an increase in temperature, at constant volume, would have on the concentration of $NO_2(g)$. State with a brief reason whether the concentration of $NO_2(g)$ is increased, decreased, or unchanged when argon gas (0.2 mol) is injected while the temperature and volume remain constant.

• A key step in the metabolism of glucose glucose-6-phosphate (G6P) to fructose-6	for energy is the isomerism of 6-phosphate (F6P);	Marks 4
G6P =	G6P ← F6P	
At 298 K, the equilibrium constant for th 298 K.	ne isomerisation is 0.510. Calculate ΔG° at	
	Answer:	
Calculate ΔG at 298 K when the [F6P] /	[G6P] ratio = 10.	
		_
	Answer:	
In which direction will the reaction shift	in order to establish equilibrium? Why?	
• The specific heat capacity of water is 4.18 J g ⁻¹ K ⁻¹ and the specific heat capacity of copper is 0.39 J g ⁻¹ K ⁻¹ . If the same amount of energy were applied to a 1.0 mol sample of each substance, both initially at 25 °C, which substance would get hotter? Show all working.		2
		_
	Answer:	

• For the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ at 25 °C $\Delta H^\circ = -198.4 \text{ kJ mol}^{-1} \text{ and } \Delta S^\circ = -187.9 \text{ J K}^{-1} \text{ mol}^{-1}$ Show that this reaction is spontaneous at 25 °C.	Marks 5	
If the volume of the reaction system is increased at 25 °C, in which direction w reaction move?	vill the	
Calculate the value of the equilibrium constant, <i>K</i> , at 25 °C.		
K =		
Assuming ΔH° and ΔS° are independent of temperature, in which temperature range is the reaction non-spontaneous?		
Answer:		