• Phenylketonuria is an inherited disorder in which phenylacetic acid, $C_6H_5CH_2COOH$, (simplified here to HPAc) accumulates in the blood. A study of the acid shows that the pH of a 0.12 M HPAc solution is 2.60. What is the p K_a of phenylacetic acid?

As HPAc is a weak acid, the equilibrium for its dissociation can be studied using an 'ICE' table:

	HPAc	+	PAc ⁻	\mathbf{H}^{+}
initial	0.12		0	0
change	- <i>x</i>		+x	+x
final	0.12 - x		x	x

By definition, pH = $-\log_{10}[H^+(aq)]$ so $[H^+(aq)] = 10^{-2.60}$ M. From the reaction table, $x = [H^+(aq)]_{eq}$ so:

 $[HPAc]_{eq} = 0.12 - x = (0.12 - 10^{-2.60}) M = 0.12 M (to 2 s.f.)$ [H⁺(aq)]_{eq} = x = 10^{-2.60} M [PAc⁻(aq)]_{eq} = x = 10^{-2.60} M

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm HPac}^-][{\rm H}^+]}{[{\rm HPAc}]} = \frac{(10^{-2.60})(10^{-2.60})}{(0.12)} = 5.26 \times 10^{-5}$$

By definition, $pK_a = -\log_{10}K_a$ so:

 $pK_a = -\log_{10}(5.26 \times 10^{-5}) = 4.28$

Answer: 4.28

- Marks
 - 7

• A sample of hydrofluoric acid (0.10 M, 25.0 mL) is titrated with 0.10 M NaOH. The pK_a of hydrofluoric acid, HF, is 3.17. Calculate the pH at the following four points.

before any NaOH is added

At this point, the solution contains only a weak acid. As HF is a weak acid, [H⁺] must be calculated by considering the equilibrium:

	HF	+	F ⁻	\mathbf{H}^{+}
initial	0.10		0	0
change	- <i>x</i>		+x	+x
final	0.10 - x		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm F}^-][{\rm H}^+]}{[{\rm H}{\rm F}]} = \frac{x^2}{(0.10-x)}$$

As $pK_a = 3.17$, $K_a = 10^{-3.17}$. K_a is very small so $0.10 - x \sim 0.10$ and hence:

$$x^2 = 0.10 \times 10^{-3.17}$$
 or $x = 0.00822$ M = [H·]

Hence, the pH is given by:

 $pH = -log_{10}[H^{+}] = -log_{10}[0.00822] = 2.09$

pH = 2.09

when half of the HF has been neutralised

At this point, half of the original HF has been converted to its conjugate base F⁻. The pH can be calculated using the Henderson-Hasselbalch equation:

$$pH = pK_a + \log \frac{[base]}{[acid]} = 3.17 + \log \frac{[F^-]}{[HF]} = 3.17 + \log(1) = 3.17$$

pH = **3.17**

at the equivalence point

At this point, all of the original HF has been converted to F^- . The number of moles of HF originally present is:

number of moles of HF = concentration × volume = $(0.10 \text{ mol } \text{L}^{-1}) \times (0.025 \text{ L}) = 0.0025 \text{ mol}$

This is equal to the amount of F^- present at equivalence. As 25.0 mL of NaOH has been added at this point, the total volume is now (25.0 + 25.0) mL = 50.0 mL. The concentration of F^- is therefore:

As F ⁻ is a weak	x base. [OH⁻] n	nust be calculate	ed using a	a reaction tab	le.
	F	H ₂ O		HF	OH
initial	0.050	large		0	0
change	- <i>y</i>	negligible		+y	+y
final	0.050 - y	large		У	У

The equilibrium constant K_b is given by:

 $K_{\rm b} = \frac{[{\rm HF}][{\rm OH}^-]}{[{\rm F}^-]} = \frac{y^2}{(0.050 - y)}$

For an acid and its conjugate base:

 $pK_{a} + pK_{b} = 14.00$

 $pK_b = 14.00 - 3.17 = 10.83$

As $pK_b = 10.83$, $K_b = 10^{-10.83}$. K_b is very small so $0.050 - y \sim 0.050$ and hence:

$$y^2 = 0.050 \times 10^{-10.83}$$
 or $y = 8.59 \times 10^{-7}$ M = [OH⁻]

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = log_{10}[8.59 \times 10^{-7}] = 6.07$$

Finally, pH + pOH = 14.00 so

$$pH = 14.00 - 6.07 = 7.93$$

pH = **7.93**

after the addition of 37.5 mL of NaOH

This volume of 0.10 M NaOH contains

number of moles of NaOH = concentration × volume = $(0.10 \text{ mol } \text{L}^{-1}) \times (0.0375 \text{ L}) = 0.00375 \text{ mol}$

From above, there was original 0.0025 mol of HF present so the excess of OH⁻ is:

excess moles of $OH^- = (0.00375 - 0.0025)$ mol = 0.00125 mol

This is present in a total volume of (25.0 + 37.5) mL = 62.5 mL, so its concentration is:

 $[OH^{-}]$ = number of moles / volume = (0.00125 mol) / (0.0625 L) = 0.020 mol L⁻¹

Hence,

 $pOH = -log_{10}[OH^-] = -log_{10}(0.020) = 1.70$

Lastly, pH = 14.00 – pOH:

pH = 14.00 - 1.70 = 12.30

pH = 12.30

THIS QUESTION CONTINUES ON THE NEXT PAGE.

• Explain the following terms or concept.

Lewis base

A species that can form a bond by donating a lone pair of electrons, *e.g.* H₂O.

• What amount of NaOH (in mol) needs to be added to 250 mL of 0.10 M acetic acid to give a solution with a pH of 5.00? The pK_a of acetic acid is 4.76.

Marks 3

If the concentration of OH^- which is added is x M then this will react with acetic acid to produce its conjugate base, acetate, so that:

[acid] = (0.10 - x) M and [base] = x M

The Henderson-Hasselbalch equation can be used to work out the ratio of these needed for a pH of 5.00:

 $pH = pK_a + \log \frac{[base]}{[acid]}$ $5.00 = 4.76 + \log \frac{x}{0.10 - x}$

Hence:

$$\frac{x}{0.10-x} = 10^{0.24} \text{ so } x = 0.0634$$

To achieve $[OH^{-}(aq)] = 0.0634 \text{ mol } L^{-1}$ in 250 mL, the number of moles of NaOH that must be added is:

number of moles = concentration \times volume = 0.0634 mol L⁻¹ \times 0.250 L = 0.016 mol

Answer: 0.016 mol

• Explain the following terms or concepts.

Isoelectric point

The pH at which a protein or amino acid has no net charge, *i.e.* it contains equal amounts of positive and negative charges.

Marks 1

- Marks
 - 3
- Phenylketonuria is an inherited disorder in which phenylacetic acid, $C_6H_5CH_2COOH$, (simplified here to HPAc) accumulates in the blood. If untreated, it can cause mental retardation and death. A study of the acid shows that the pH of a 0.12 M HPAc solution is 2.60. What is the p K_a of phenylacetic acid?

As HPAc is a weak acid, the equilibrium for its dissociation can be studied using an 'ICE' table:

	HPAc	+	PAc ⁻	\mathbf{H}^{+}
initial	0.12		0	0
change	- <i>x</i>		+x	+x
final	0.12 - x		x	x

By definition, pH = $-\log_{10}[H^+(aq)]$ so $[H^+(aq)] = 10^{-2.60}$ M. From the reaction table, $x = [H^+(aq)]_{eq}$ so:

 $[HPAc]_{eq} = 0.12 - x = (0.12 - 10^{-2.60}) M = 0.12 M (to 2 s.f.)$ $[H^{+}(aq)]_{eq} = x = 10^{-2.60} M$ $[PAc^{-}(aq)]_{eq} = x = 10^{-2.60} M$

The equilibrium constant K_a is given by:

 $K_{\rm a} = \frac{[{\rm HPac}^-][{\rm H}^+]}{[{\rm HPAc}]} = \frac{(10^{-2.60})(10^{-2.60})}{(0.12)} = 5.26 \times 10^{-5}$

By definition, $pK_a = -\log_{10}K_a$ so:

 $pK_a = -\log_{10}(5.26 \times 10^{-5}) = 4.28$

Answer: **4.28**

- Marks 4
- Buffer 1 is a solution containing 0.08 M NH₄Cl and 0.12 M NH₃. Buffer 2 is a solution containing 0.15 M NH₄Cl and 0.05 M NH₃. The acid dissociation constant of the ammonium ion is 5.50×10^{-10} . What are the pH values of each of the buffer solutions?

By definition, $pK_a = -\log_{10}K_a$ so:

 $pK_a = -\log_{10}(5.50 \times 10^{-10}) = 9.26$

Using the Henderson-Hasselbalch equation,

 $\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log \frac{[\mathsf{base}]}{[\mathsf{acid}]} = 9.290 + \log \frac{[\mathsf{NH}_3]}{[\mathsf{NH}_3\mathsf{CI}]}$

For buffer 1:

$$pH = 9.26 + \log \frac{0.12}{0.08} = 9.44$$

For buffer 2:

$$pH = 9.26 + \log \frac{0.05}{0.15} = 8.78$$

Buffer 1 pH = **9.44**

Buffer 2 pH = **8.78**

Which buffer is better able to maintain a steady pH on the addition of small amounts of both a strong acid and strong base? Explain.

Buffer 1 is better able to maintain a steady pH because its pH is closer to the pK_a of NH_4^+ . This is because it has relatively high concentrations of both NH_4^+ and NH_3 which can react with any added OH^- or H^+ respectively.

• Explain the role played by the lungs and the kidneys in maintaining blood pH at a constant value of 7.4. The most important buffer system in the blood is the hydrogencarbonate / carbonic acid system: $HCO_3^-(aq) + H^+(aq) \rightleftharpoons H_2CO_3(aq)$ If the amount of H^+ exceeds the capacity of the buffering system (*e.g.* during vigorous exercise), the lungs can help by removing $CO_2(g)$. CO_2 is linked to the buffer system via $H_2CO_3(aq) \rightleftharpoons H_2O + CO_2(g)$ Thus removal of $CO_2(g)$ will shift the HCO_3^-/H_2CO_3 equilibrium to the right, reducing H^+ . If the blood becomes too basic, the kidneys can help by excreting HCO_3^- . This will shift the buffer equilibrium to the left, producing more H^+ .

•	Sketch the titra hydrofluoric ac Calculate the pl (i) before a (ii) when h (iii) at the (iv) 50% b the equ	tion curve (pH a id (HF) with a p H at the followin my NaOH is add alf of the HF ha equivalence poin eyond the equiv uivalence volum	gainst mI K_a of 3.1' ng four po- led; s been ne nt; and alence po- ne has bee	L of added 7 is titrated pints: sutralised; sint, <i>i.e.</i> when added.	base) when 2 I with 0.10 M ten 1.5 times	5.0 mL of 0.10 M NaOH.	Marks 8
	(i) At this poin As HF is a we	t, the solution \mathbf{c} ak acid, [\mathbf{H}^+] m	contains (aust be ca	only a wea	k acid. y considerin _i	g the equilibrium:	
		HF	-	F ⁻	\mathbf{H}^+		
	initial	0.10		0	0		
	change	-x		+x	+x		
	final	0.10 - x		x	x		
	x ² = 0.10 × Hence, the pH pH = –log (ii) At this poin F ⁻ . The pH car	$10^{-3.17}$ or I is given by: $10[H^+] = -log_{10}[M^+]$ nt, half of the one be calculated p	x = 0.0 0.00822] original H using the	00822 M = = 2.09 IF has bee Henderso	= [H ⁺] on converted on-Hasselbalo	to its conjugate base ch equation:	
	$\mathbf{pH} = \mathbf{pK}_{\mathbf{a}}$	$+\log \frac{[base]}{[acid]} = 3$	3.17 + log	$g_{[HF]}^{[F^-]} = 3.17$	7 + + log(1) =	= 3.17	
1	(iii) At this point of the second s	int, all of the or riginally presen	riginal H it is:	F has been	n converted t	o F ⁻ . The number of	
number of moles of HF = concentration × volume = $(0.10 \text{ mol } \text{L}^{-1}) \times (0.025 \text{ L}) = 0.0025 \text{ mol}$							
]	This is equal t has been adde The concentra	to the amount d at this point, tion of F ⁻ is the	of F ⁻ pre the total refore:	esent at eq volume is	uivalence. A now (25.0 +	s 25.0 mL of NaOH 25.0) mL = 50.0 mL.	
	[F ⁻] = num	iber of moles / v	volume =	(0.0025 n	nol) / (0.050 L	$L = 0.050 \text{ mol } L^{-1}$	
		ANSWEI	R CONT	INUES OF	N THE NEXT	ΓPAGE	

	F	H ₂ O	+	HF	OH.
initial	0.050	large		0	0
change	-y	negligible		+ <i>y</i>	+ <i>y</i>
final	0.050 - y	large		у	у

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm HF][\rm OH^-]}{[\rm F^-]} = \frac{y^2}{(0.050 - y)}$$

For an acid and its conjugate base:

 $pK_a + pK_b = 14.00$

 $pK_b = 14.00 - 3.17 = 10.83$

As $pK_b = 10.83$, $K_b = 10^{-10.83}$. K_b is very small so $0.050 - y \sim 0.050$ and hence:

$$y^2 = 0.050 \times 10^{-10.83}$$
 or $y = 8.59 \times 10^{-7}$ M = [OH⁻]

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = log_{10}[8.59 \times 10^{-7}] = 6.07$$

Finally, pH + pOH = 14.00 so

 $\mathbf{pH} = \mathbf{14.00} - \mathbf{6.07} = \mathbf{7.93}$

(iv) At this point, there is excess strong base present. Addition of 1.5 times the equivalence volume corresponds to addition of (1.5×25.0) mL = 37.5 mL. This volume of 0.10 M NaOH contains

number of moles of NaOH = concentration × volume = $(0.10 \text{ mol } \text{L}^{-1}) \times (0.0375 \text{ L}) = 0.00375 \text{ mol}$

From (iii), there was original 0.0025 mol of HF present so the excess of OH⁻ is:

excess moles of OH⁻ = (0.00375 – 0.0025) mol = 0.00125 mol

This is present in a total volume of (25.0 + 37.5) mL = 62.5 mL, so its concentration is:

 $[OH^{-}] =$ number of moles / volume = (0.00125 mol) / (0.0625 L) = 0.020 mol L⁻¹ Hence,

 $pOH = -log_{10}[OH^{-}] = -log_{10}(0.020) = 1.70$

Lastly, pH = 14.00 – pOH:

pH = 14.00 - 1.70 = 12.30

Putting these 4 points together gives the titration curve:

• Tris(hydroxymethyl)aminomethane is commonly used to make buffer solutions. It has a base ionisation constant of 1.26×10^{-6} . What is the pH of a 0.05 M aqueous solution of this compound?

The base ionization constant refers to the reaction below for which the reaction table is:

	tris	+ H ₂ O	+	$trisH^+$	OH.
Initial	0.05			0	0
Change	- <i>x</i>			+x	+ <i>x</i>
Equilibrium	0.05 - <i>x</i>			x	x

As $pK_b = -\log_{10}K_b$, at equilibrium,

$$K_{\rm b} = \frac{[{\rm tris}{\rm H}^+][{\rm O}{\rm H}^-]}{[{\rm tris}]} = \frac{(x)(x)}{(0.05 - x)} = \frac{x^2}{(0.05 - x)} = 1.26 \times 10^{-6}$$

As K_b is so small, x will be tiny and $0.05 - x \sim 0.05$ and so

$$x^{2} = 1.26 \times 10^{-6} \times 0.05$$
 or $x = [OH^{-}] = 2.5 \times 10^{-4}$ M

Hence, $pOH = -log_{10}[OH^-] = -log_{10}(2.5 \times 10^{-4}) = 3.60$ and so:

$$pH = 14.00 - pOH = 10.4$$

Answer: 10.4

• The ionisation constant of water, K_w , at 37 °C is 2.42×10^{-14} . What is the pH for a neutral solution at 37 °C?

By definition, $K_w = [H^+(aq)][OH^-(aq)]$. Water ionizes to produce equal amounts of $H^+(aq)$ and $OH^-(aq)$. Let $[H^+(aq)] = [OH^-(aq)] = y$:

$$K_{\rm w} = (y)(y) = y^2 = 2.42 \times 10^{-14}$$

$$y = 1.56 \times 10^{-7} \text{ M} = [\text{H}^+(\text{aq})]$$

 $pH = -log_{10}[H^+(aq)] = -log_{10}(1.56 \times 10^{-7}) = 6.81$

Answer: 6.81

• Calculate the pH of a 0.10 mol L^{-1} solution of HF. (The p K_a of HF is 3.17.)

Marks 6

HF is a weak acid so the equilibrium concentrations need to be calculated using a reaction table:

	HF	+	H ⁺ (aq)	F⁻(aq)
Initial	0.10		0	0
Change	- <i>x</i>		+x	+x
Equilibrium	0.10 - x		x	x

As $pK_a = -\log_{10}K_a$, at equilibrium,

$$K_{\rm a} = \frac{[{\rm H}^+({\rm aq})][{\rm F}^-({\rm aq})]}{[{\rm HF}({\rm aq})]} = \frac{(x)(x)}{(0.10-x)} = \frac{x^2}{(0.10-x)} = 10^{-3.17}$$

As K_a is so small, x will be tiny and $0.10 - x \sim 0.10$ and so

$$x^{2} = 10^{-3.17} \times 0.10$$
 or $x = [H^{+}(aq)] = 0.00822$ M

As $pH = -log_{10}[H^+(aq)]$,

 $pH = -log_{10}(0.00822) = 2.09$

Answer: 2.09

What mass of NaF needs to be added to 100.0 mL of the above solution to make a buffer with a pH of 3.00?

Using the Henderson-Hasselbalch equation for the pH of the buffer:

$$\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log\left(\frac{[\mathbf{base}]}{[\mathbf{acid}]}\right)$$

To make a buffer with pH = 3.00 and [acid] = [HF] = 0.10 M:

$$3.00 = 3.17 + \log\left(\frac{[F^-]}{0.10}\right)$$
 or $\log\left(\frac{[F^-]}{0.10}\right) = =0.17$

Hence,

 $[F^{-}] = 0.10 \times 10^{-0.17} = 0.068 M$

The number of moles in 100.0 mL is thus 0.0068 mol. As NaF will dissolve to give one F⁻ per formula unit, this is also the number of moles of NaF required.

ANSWER CONTINUES ON THE NEXT PAGE

The formula mass of NaF is (22.99 (Na) + 19.00 (F)) g mol⁻¹ = 41.99 g mol⁻¹. The mass of NaF required is thus:

mass = number of moles × formula mass = $(0.0068 \text{ mol}) \times (41.99 \text{ g mol}^{-1}) = 0.28 \text{ g}$

Answer: **0.28 g**

Explain why HCl is a much stronger acid than HF.

Cl is a much larger atom than F and is less electronegative. The H–Cl bond is therefore much longer and weaker than the H–F bond. The H–Cl bond is therefore easier to break and it is the stronger acid.

HF is actually a weak acid. F is smaller and more electronegative than O, so the H–F bond is stronger than the O–H bond. There is consequently little dissociation of HF when it is dissolved in water.

- 3
- A 300.0 mL solution of HCl has a pH of 1.22. Given that the pK_a of iodic acid, HIO₃, is 0.79, how many moles of sodium iodate, NaIO₃, would need to be added to this solution to raise its pH to 2.00?

As $pH = -log_{10}([H_3O^+(aq)],$

$$[H_3O^+(aq)]_{initial} = 10^{-1.22} = 0.0600 \text{ and } [H_3O^+(aq)]_{final} = 10^{-2.00} = 0.0100$$

The reaction table is:

	IO ₃ (aq)	H ₃ O ⁺ (aq)	+	HIO ₃	H ₂ O
initial	X	0.0600		0	large
final	x - 0.0500	0.0100		0.0500	large

The solution contains a weak acid (HIO₃ and its conjugate base (IO₃⁻). It is a buffer and can be treated using the Henderson-Hasselbalch equation,

$$\mathbf{pH} = \mathbf{pK}_{\mathbf{a}} + \log_{10}\left(\frac{[\mathbf{base}]}{[\mathbf{acid}]}\right)$$

$$2.00 = 0.79 + \log_{10}\left(\frac{(x - 0.0500)}{0.0500}\right)$$

 $\mathbf{x} = \mathbf{0.865} \mathbf{M}$

This concentration is present in 300.0 mL of solution so the number of moles of IO_3 which has been added is,

number of moles = concentration \times volume = 0.865 \times 0.3000 = 0.260 mol

Answer: 0.260 mol

- 3
- Explain why the acidity of hydrogen halides *increases* with increasing halogen size (*i.e.*, K_a (HCl) $< K_a$ (HBr) $< K_a$ (HI)), while the acidity of hypohalous acids *decreases* with increasing halogen size (*i.e.*, K_a (HOCl) $> K_a$ (HOBr) $> K_a$ (HOI)).

For the hydrogen halides, the length of the H-X bond increases and hence gets weaker as the halogen gets bigger,. The weaker the bond, the more easily the H^+ dissociates.

For the hypohalous acids, as the electronegativity of the halide increases, the more electron density it pulls from the O-H bond towards itself. This results in the O-H bond becoming more polar and increasing the ease with which the H^+ will be lost.

• The K_a of benzoic acid is 6.3×10^{-5} M at 25 °C.

Calculate the pH of a 0.0100 M aqueous solution of sodium benzoate (C₆H₅COONa).

As benzoic acid is a weak acid, its conjugate base, $C_6H_5COO^-$, is a weak base and so $[OH^-]$ must be calculated using the reaction table:

	C ₆ H ₅ COO ⁻	H ₂ O	 OH-	C ₆ H ₅ COOH
initial	0.0100	large	0	0
change	-X	negligible	+x	+x
final	0.0100 - x	large	X	X

The equilibrium constant K_b is given by:

$$K_{\rm b} = \frac{[\rm OH^-][C_6H_5COOH]}{[C_6H_5COO^-]} = \frac{x^2}{0.0100 - x}$$

For an acid and its conjugate base in aqueous solution, $K_a \times K_b = K_w = 10^{-14}$. Hence,

$$K_{\rm b} = \frac{10^{-14}}{6.3 \times 10^{-5}} = 1.6 \times 10^{-10}$$

As K_b is very small, $0.0100 - x \sim 0.0100$ and hence:

 $x^2 = 0.0100 \times (1.6 \times 10^{-10})$ or $x = 1.3 \times 10^{-6} M = [OH^{-}(aq)]$

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}] = -log_{10}[1.3 \times 10^{-6}] = 5.9$$

Finally, pH + pOH = 14.0 so

pH = 14.0 - 5.9 = 8.1

Answer: pH = 8.1
Answer: $\mathbf{nH} = 4.1$

ANSWER CONTINUES ON THE NEXT PAGE

Marks 5 A buffer solution is prepared by adding 375 mL of this 0.0100 M aqueous solution of sodium benzoate to 225 mL of 0.0200 M aqueous benzoic acid. Calculate the pH of the buffer solution.

375 mL of a 0.0100 of benzoate contains, moles of benzoate = volume×concentration = $0.375 \times 0.0100 = 3.75 \times 10^{-3}$ mol 225 mL of a 0.0200 of benzoic acid contains, moles of benzoic acid = $0.225 \times 0.0200 = 4.50 \times 10^{-3}$ mol The mixture has a volume of (375 + 225) = 600 mL so the concentrations of benzoate (base) and benzoic acid (acid) are: $[base] = \frac{number of moles}{volume} = \frac{3.75 \times 10^{-3}}{0.600} = 6.25 \times 10^{-3} \text{ M}$ $[acid] = \frac{4.50 \times 10^{-3}}{0.600} = 7.50 \times 10^{-3} \text{ M}$ As $pK_a = -log_{10}K_a$, $pK_a = -log_{10}(6.3 \times 10^{-5}) = 4.2$ The pH of the buffer can be calculated using the Henderson-Hasselbalch equation, $pH = pK_a + log_{10}\left(\frac{[base]}{[acid]}\right) = 4.2 + log_{10}\left(\frac{6.25 \times 10^{-3}}{7.50 \times 10^{-3}}\right) = 4.1$

- Marks 3
- The active ingredient in aspirin is the monoprotic acid, acetylsalicylic acid (HC₉H₇O₄) that has a K_a of 3.3×10^{-4} M at 25 °C. What is the pH of a solution obtained when a tablet containing 200 mg of acetylsalicylic acid is dissolved in 125 mL of water?

The molar mass is $(8 \times 1.008 \text{ (H)}) + (9 \times 12.01) + (4 \times 16.00 \text{ (O)}) \text{ g mol}^{-1} = 180.154 \text{ g mol}^{1}$ so 200 mg contains:

$$n(\text{HC}_{9}\text{H}_{7}\text{O}_{4}) = \frac{\text{mass}}{\text{molar mass}} = \frac{(200 \times 10^{-3} \text{ g})}{(180.154 \text{ g mol}^{-1})} = 1.11 \times 10^{-3} \text{ mol}$$

When this amount is dissolved in 125 mL, the concentration is:

$$n[\text{HC}_{9}\text{H}_{7}\text{O}_{4}] = \frac{\text{number of moles}}{\text{volume}} = \frac{(1.11 \times 10^{-3} \text{ mol})}{(125/1000 \text{ L})} = 8.88 \times 10^{-3} \text{ M}$$

The reaction table is:

	HC9H7O4	H ₂ O	+	H_3O^+	C ₉ H ₇ O ₄ ⁻
initial	8.88×10 ⁻³	large		0	0
change	- <i>x</i>	negligible		+x	+x
final	$8.88 \times 10^{-3} - x$	large		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H}_{3}{\rm O}^{+}({\rm aq})][{\rm C}_{9}{\rm H}_{7}{\rm O}_{4}^{-}({\rm aq})]}{[{\rm H}{\rm C}_{9}{\rm H}_{7}{\rm O}_{4}({\rm aq})]} = \frac{x^{2}}{(8.88 \times 10^{-3} - x)} = 3.3 \times 10^{-4}$$

 $K_{\rm a}$ is not sufficiently small in comparison to the initial concentration of acid that any approximation to this equation can be made. Hence, the quadratic expression must be solved:

$$x^{2} = (3.3 \times 10^{-4} \times 8.88 \times 10^{-3}) - (3.3 \times 10^{-4})x$$
$$x^{2} + (3.3 \times 10^{-4})x - (2.9 \times 10^{-6})$$

With a = 1, $b = +3.3 \times 10^{-4}$ and $c = -2.9 \times 10^{-6}$, the roots are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(3.3 \times 10^4) \pm \sqrt{(3.3 \times 10^4)^2 - (4 \times 1 \times -2.9 \times 10^{-5})}}{(2 \times 1)}$$

Only the positive root has physical significance so $x = 1.55 \times 10^{-3}$

$$[H_3O^+(aq)] = x = 1.55 \times 10^{-3} \text{ M}, \text{ pH} = -\log_{10}([H_3O^+(aq)]) = -\log_{10}(1.55 \times 10^{-3}) = 2.81$$

ANSWER CONTIUNES ON THE NEXT PAGE

- 2
- A standard test for the presence of chloride ion in water involves the appearance of a precipitate of AgCl upon addition of 1 mL of AgNO₃ (0.03 M) to 100 mL of the water sample. What is the minimum concentration of Cl⁻ detectable by this method? $K_{\rm sp}$ (AgCl) = 1.8×10^{-10} M².

The number of moles of Ag⁺(aq) in 1 mL of 0.03 M AgNO₃ is:

 $n(\text{Ag}^+(\text{aq})) = \text{concentration} \times \text{volume} = (0.03 \text{ M}) \times (1 \times 10^{-3} \text{ L}) = 3 \times 10^{-5} \text{ mol}$

In the test, this amount is present in (100 + 1) = 101 mL so its concentration is:

 $[Ag^{+}(aq)] = \frac{\text{number of moles}}{\text{volume}} = \frac{(3 \times 10^{5} \text{ mol})}{(101 \times 10^{-3} \text{ L})} = 3 \times 10^{-4} \text{ M}$

The solubility equilibrium and product for AgCl are given by:

 $AgCl(s) \iff Ag^{+}(aq) + C\Gamma(aq)$

 $K_{\rm sp} = [{\rm Ag}^+({\rm aq})][{\rm Cl}^-({\rm aq})] = 1.8 \times 10^{-10}$

Hence,

$$[C\Gamma(aq)] = \frac{K_{sp}}{[Ag^+(aq)]} = \frac{(1.8 \times 10^{-10})}{(3 \times 10^{-4})} = 6 \times 10^{-7} M$$

If [Cl⁻(aq)] is less than this value, AgCl will not precipitate.

Answer: $[CI^{-}(aq)] = -6 \times 10^{-7} M$

• Uric acid, $C_5H_5N_4O_3$, is a weak diprotic acid with a low solubility of 70 mg L⁻¹. The extremely painful inflammation known as gout occurs when crystals of uric acid are deposited in the joints. Given that the pH of a saturated solution of uric acid is 4.58, calculate the p K_{a1} of uric acid at 25 °C? As pH = $-\log_{10}([H_3O^+(aq)])$ 4.58, $[H_3O^+(aq)] = 10^{4.58} = 2.63 \times 10^{-5}$ M. The molar mass of uric acid is: $((5 \times 12.01 \text{ (C)}) + (5 \times 1.008 \text{ (H)}) + (4 \times 14.01 \text{ (N)}) + (3 \times 16.00 \text{ (O)}) \text{ g mol}^{-1}$ $= 169.13 \text{ g mol}^{-1}$ A one litre solution contains 70 mg corresponding to number of moles = $\frac{(70 \times 10^{-3} \text{ g})}{(169.13 \text{ g mol}^{-1})} = 4.1 \times 10^{-4} \text{ mol}.$ For this weak acid, the reaction table is: C₅H₅N₄O₃ H_2O H_3O^+ $C_5H_4N_4O_3^-$ 4.1×10⁻⁴ initial 0 0 large $(4.1 \times 10^{-4}) - (2.63 \times 10^{-5})$ 2.63×10^{-5} 2.63×10^{-5} final large The equilibrium constant K_{a1} is given by: $K_{a1} = \frac{[H_3O^+(aq)][C_5H_4N_4O_3^-(aq)]}{[C_5H_5N_4O_3(aq)]} = \frac{(2.63 \times 10^{-5}) \times (2.63 \times 10^{-5})}{(3.9 \times 10^{-4})} = 1.8 \times 10^{-6}$ Hence, $pK_{a1} = -\log_{10}K_{a1} = -\log_{10}(1.8 \times 10^{-6}) = 5.7$ Answer: $pK_{a1} = 5.7$ The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL⁻¹. Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs. The formula mass of the monosodium salt, $NaC_5H_4N_4O_3$ is 22.99 (Na) + (5×12.01 (C)) + $(4 \times 1.008$ (H)) + $(4 \times 14.01$ (N)) + $(3 \times 16.00$ (O)) = 191.112. The molar solubility is: molar solubility = $\frac{\text{solubility}}{\text{formula mass}} = \frac{(8 \times 10^{-4} \text{ g mL}^{-1})}{(191.112 \text{ g mol}^{-1})}$ $= 4 \times 10^{-6} \text{ mol mL}^{-1} = 4 \times 10^{-3} \text{ M}$ Hence, $K_{sp} = [Na^+(aq)][C_5H_4N_4O_3^-(aq)] = (4 \times 10^{-3}) \times (4 \times 10^{-3}) = 2 \times 10^{-5}$ Answer: $K_{sp} = 2 \times 10^{-5}$

Suggest a possible reason why the pH of blood plasma remains near 7.4 even when saturated with uric acid.

Blood is buffered by a CO_3^{2-} / HCO_3^{-} buffering system which resists changes in pH.

• Acetic acid (100 mL, 0.20 M) is mixed with solid sodium hydroxide (0.010 mol). Calculate the final pH of the solution. pK_a of acetic acid = 4.76

3

Assuming that the addition of solid sodium hydroxide causes no volume change, the initial [OH⁻(aq)] is:

concentration = $\frac{\text{number of moles}}{\text{volume}} = \frac{0.010 \text{ mol}}{(100/1000) \text{ L}} = 0.10 \text{ M}$

Acetic acid and sodium hydroxide react together in a 1:1 ratio:

	СН ₃ СООН	OH-	-	CH ₃ COO ⁻	H ₂ O
initial	0.20	0.10		0	large
final	(0.20 - 0.10) = 0.10	0		0.10	large

The solution contains an acid and its conjugate base so the Henderson-Hasselbalch equation can be used:

$$pH = pK_a + \log_{10}\left(\frac{[base]}{[acid]}\right) = 4.76 + \log_{10}\left(\frac{[CH_3COO^-]}{[CH_3COOH]}\right)$$

As [acid] = [base], $\log_{10}\left(\frac{[base]}{[acid]}\right) = \log_{10}(1) = 0$ and so

$$pH = pK_a = 4.76$$

pH = **4.76**