• Calculate the molar solubility of silver sulfide, Ag₂S, given that K_{sp} is 8×10^{-51} at 25 °C.

Marks 3

The dissolution reaction and solubility product are:

$$Ag_2S(s) \rightleftharpoons 2Ag^+(aq) + S^{2-}(aq)$$
 $K_{sp} = [Ag^+(aq)]^2[S^{2-}(aq)]$

If x mol of Ag₂S dissolve in one litre, then $[Ag^{+}(aq)] = 2x M$ and $[S^{2-}(aq)] = x M$. Hence:

$$K_{\rm sp} = (2x)^2(x) = 4x^3 = 8 \times 10^{-51}$$
 so $x = 1 \times 10^{-17}$

Answer: 1×10^{-17}

• Will AgCl precipitate if solutions of 25.0 mL of 2.0×10^{-5} M KCl and 75.0 mL of 1×10^{-5} M AgNO₃ are added to one another? Show your reasoning. $K_{\rm sp}$ for AgCl = 1.8×10^{-10} at 25 °C.

Marks 2

After mixing the solution has a volume of (25.0 + 75.0) mL = 100.0 mL. Using $c_1V_1 = c_2V_2$, this leads to Ag⁺ and Cl⁻ concentrations of:

$$[Ag^{+}(aq)] = (75.0 / 100.0) \times 1 \times 10^{-5} M = 7.5 \times 10^{-6} M$$

$$[Cl^{2}(aq)] = (25.0 / 100.0) \times 2.0 \times 10^{-5} M = 5 \times 10^{-5} M$$

AgCl(s) dissolves to give $Ag^+(aq) + Cl^-(aq)$ with the ionic product, Q_{sp} :

$$Q_{\rm sp} = [{\bf Ag}^+({\bf aq})][{\bf Cl}^-({\bf aq})] = (7.5 \times 10^{-6}) \times (5 \times 10^{-5}) = 4 \times 10^{-11}$$

As $Q_{\rm sp} << K_{\rm sp}$, there will be no precipitate.

Answer: No precipitate forms

4

• A saturated solution of lithium carbonate in pure water at 20 °C contains 1.33 g of solute per 100.0 mL of solution. Calculate the aqueous solubility product of lithium carbonate at this temperature.

The molar mass of Li₂CO₃ is $(2 \times 6.941 \text{ (Li)} + 12.01 \text{ (C)} + 3 \times 16.00 \text{ (O)}) \text{ g mol}^{-1} = 73.892 \text{ g mol}^{-1}$. A mass of 1.33 g therefore corresponds to:

number of moles =
$$\frac{\text{mass}}{\text{molar mass}} = \frac{1.33 \text{ g}}{73.892 \text{ g mol}^{-1}} = 0.0180 \text{ mol}$$

The reaction table for the dissolution of Li₂CO₃ is:

	Li ₂ CO ₃	-	2Li ⁺ (aq)	CO ₃ ² -(aq)
Initial	0.0180		0	0
Change	-x		+2x	+x
Equilibrium	-		0.0360	0.0180

These number of moles of $\text{Li}^+(aq)$ and $\text{CO}_3^{2-}(aq)$ in 100.0 mL. In a litre, the concentrations are therefore $[\text{Li}^+(aq)] = 0.360 \text{ M}$ and $[\text{CO}_3^{2-}(aq)] = 0.180 \text{ M}$. The solubility product is therefore:

$$K_{\rm sp} = [{\rm Li}^+({\rm aq})]^2 [{\rm CO_3}^{2-}({\rm aq})] = (0.360)^2 (0.180) = 0.0233$$

$$K_{\rm sp} = 0.0233$$

When the temperature of the same solution is raised to 40 °C, the solubility is reduced to 1.17 g per 100.0 mL of solution. What conclusions can be drawn about the sign of the standard enthalpy of dissolution of lithium carbonate?

Increasing the temperature leads to less dissolution: the equilibrium has shifted towards reactants (to the left). According to Le Chatelier's principle, this is consistent with an exothermic reaction: $\Delta H < 0$.

CHEM1612 2008-N-10 November 2008

3

• A standard test for the presence of chloride ion in water involves the appearance of a precipitate of AgCl upon addition of 0.05 mL of AgNO₃ (0.03 M) to 100 mL of sample. What is the minimum concentration of Cl⁻ detectable by this method? The K_{sp} of AgCl = 1.8×10^{-10} .

The number of moles of $Ag^+(aq)$ in 0.05 mL of a 0.03 M solution of $AgNO_3(aq)$ is:

$$\begin{array}{l} number\ of\ moles = concentration \times volume \\ = (0.03\ mol\ L^{\text{--}1}) \times (0.05 \times 10^{\text{--}3}\ L) = 1.5 \times 10^{\text{--}6}\ mol \end{array}$$

When this is added to 100. mL of the sample:

[Ag⁺(aq)] = number of moles / volume
=
$$(1.5 \times 10^{-6} \text{ mol}) / (0.100 \text{ L}) = 1.5 \times 10^{-5} \text{ M}$$

For AgCl(s), $K_{sp} = [Ag^+(aq)][Cl^-(aq)]$ and so:

$$[Cl^{-}(aq)] = K_{sp} / [Ag^{+}(aq)] = 1.8 \times 10^{-10} / 1.5 \times 10^{-5} = 1.2 \times 10^{-5}$$

Answer: 1.2×10^{-5}

• What is the molar solubility of Cu(OH)₂ at 25 °C given its $K_{\rm sp} = 4.5 \times 10^{-21} \, {\rm M}^3$?

Marks 2

The solubility expression and product for $Cu(OH)_2(s)$ are:

$$Cu(OH)_2 \iff Cu^{2+}(aq) + 2OH^{-}(aq) \qquad K_{sp} = [Cu^{2+}(aq)][OH^{-}(aq)]^2$$

If the molar solubility is S, $[Cu^{2+}(aq)] = S$ and $[OH^{-}(aq)] = 2S$. Hence,

$$K_{sp} = (S) \times (2S)^2 = 4S^3 = 4.5 \times 10^{-21}$$

$$S = 1.0 \times 10^{-7} M$$

Answer: 1.0×10^{-7} M

• The molar solubility of lead(II) fluoride, PbF₂, is found to be 2.6×10^{-3} M at 25 °C. Calculate the value of $K_{\rm sp}$ for this compound at this temperature.

Marks 2

The solubility equilibrium and constant for PbF₂(s) are,

$$PbF_2(s) \implies Pb^{2+}(aq) + 2F(aq)$$
 $K_{sp} = [Pb^{2+}(aq)][F(aq)]^2$

As one moles of $Pb^{2+}(aq)$ and two moles of $F^{-}(aq)$ are produced for every mole of $PbF_2(s)$ which dissolves, $[Pb^{2+}(aq)] = 2.6 \times 10^{-3}$ M and $[F^{-}(aq)] = (2 \times 2.6 \times 10^{-3}) = 5.2 \times 10^{-3}$ M. Hence,

$$K_{\rm sp} = (2.6 \times 10^{-3}) \times (5.2 \times 10^{-3})^2 = 7.0 \times 10^{-8}$$

$$K_{\rm sp} = 7.0 \times 10^{-8}$$

• The active ingredient in aspirin is the monoprotic acid, acetylsalicylic acid (HC₉H₇O₄) that has a K_a of 3.3×10^{-4} M at 25 °C. What is the pH of a solution obtained when a tablet containing 200 mg of acetylsalicylic acid is dissolved in 125 mL of water?

Marks 3

The molar mass is $(8\times1.008 \text{ (H)}) + (9\times12.01) + (4\times16.00 \text{ (O)}) \text{ g mol}^{-1} = 180.154 \text{ g mol}^{1}$ so 200 mg contains:

$$n(\text{HC}_9\text{H}_7\text{O}_4) = \frac{\text{mass}}{\text{molar mass}} = \frac{(200 \times 10^{-3} \text{ g})}{(180.154 \text{ g mol}^{-1})} = 1.11 \times 10^{-3} \text{ mol}$$

When this amount is dissolved in 125 mL, the concentration is:

$$n[HC_9H_7O_4] = \frac{\text{number of moles}}{\text{volume}} = \frac{(1.11 \times 10^{-3} \text{ mol})}{(125/1000 \text{ L})} = 8.88 \times 10^{-3} \text{ M}$$

The reaction table is:

	HC ₉ H ₇ O ₄	H ₂ O	-	H ₃ O ⁺	C ₉ H ₇ O ₄ ⁻
initial	8.88×10 ⁻³	large		0	0
change	-x	negligible		+x	+x
final	$8.88 \times 10^{-3} - x$	large		x	x

The equilibrium constant K_a is given by:

$$K_{\rm a} = \frac{[{\rm H_3O^+(aq)}][{\rm C_9H_7O_4^-(aq)}]}{[{\rm HC_9H_7O_4(aq)}]} = \frac{x^2}{(8.88 \times 10^{-3} - x)} = 3.3 \times 10^{-4}$$

 K_a is not sufficiently small in comparison to the initial concentration of acid that any approximation to this equation can be made. Hence, the quadratic expression must be solved:

$$x^2 = (3.3 \times 10^{-4} \times 8.88 \times 10^{-3}) - (3.3 \times 10^{-4})x$$

$$x^2 + (3.3 \times 10^{-4})x - (2.9 \times 10^{-6})$$

With a = 1, $b = +3.3 \times 10^{-4}$ and $c = -2.9 \times 10^{-6}$, the roots are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(3.3 \times 10^{-4}) \pm \sqrt{(3.3 \times 10^{-4})^2 - (4 \times 1 \times -2.9 \times 10^{-5})}}{(2 \times 1)}$$

Only the positive root has physical significance so $x = 1.55 \times 10^{-3}$

$$[H_3O^+(aq)] = x = 1.55 \times 10^{-3} \text{ M}, \text{ pH} = -\log_{10}([H_3O^+(aq)]) = -\log_{10}(1.55 \times 10^{-3}) = 2.81$$

Answer: pH = 2.81

2

• A standard test for the presence of chloride ion in water involves the appearance of a precipitate of AgCl upon addition of 1 mL of AgNO₃ (0.03 M) to 100 mL of the water sample. What is the minimum concentration of Cl⁻ detectable by this method? $K_{\rm sp}({\rm AgCl}) = 1.8 \times 10^{-10} \, {\rm M}^2$.

The number of moles of Ag⁺(aq) in 1 mL of 0.03 M AgNO₃ is:

$$n(Ag^{+}(aq)) = concentration \times volume = (0.03 \text{ M}) \times (1 \times 10^{-3} \text{ L}) = 3 \times 10^{-5} \text{ mol}$$

In the test, this amount is present in (100 + 1) = 101 mL so its concentration is:

$$[Ag^{+}(aq)] = \frac{\text{number of moles}}{\text{volume}} = \frac{(3 \times 10^{5} \text{ mol})}{(101 \times 10^{-3} \text{ L})} = 3 \times 10^{-4} \text{ M}$$

The solubility equilibrium and product for AgCl are given by:

$$AgCl(s) \iff Ag^{+}(aq) + Cl(aq)$$

$$K_{\rm sp} = [{\rm Ag}^+({\rm aq})][{\rm Cl}^-({\rm aq})] = 1.8 \times 10^{-10}$$

Hence,

$$[C\Gamma(aq)] = \frac{K_{sp}}{[Ag^{+}(aq)]} = \frac{(1.8 \times 10^{-10})}{(3 \times 10^{-4})} = 6 \times 10^{-7} \text{ M}$$

If [Cl⁻(aq)] is less than this value, AgCl will not precipitate.

Answer: $[Cl^{-}(aq)] = 6 \times 10^{-7} M$

CHEM1612 2004-N-6 November 2004

• Uric acid, $C_5H_5N_4O_3$, is a weak diprotic acid with a low solubility of 70 mg L⁻¹. The extremely painful inflammation known as gout occurs when crystals of uric acid are deposited in the joints. Given that the pH of a saturated solution of uric acid is 4.58, calculate the p K_{a1} of uric acid at 25 °C?

Marks 7

As pH =
$$-\log_{10}([H_3O^+(aq)])$$
 4.58, $[H_3O^+(aq)] = 10^{4.58} = 2.63 \times 10^{-5}$ M.

The molar mass of uric acid is:

$$((5\times12.01 \text{ (C)}) + (5\times1.008 \text{ (H)}) + (4\times14.01 \text{ (N)}) + (3\times16.00 \text{ (O)}) \text{ g mol}^{-1}$$

= 169.13 g mol⁻¹

A one litre solution contains 70 mg corresponding to

number of moles =
$$\frac{(70 \times 10^{-3} \text{ g})}{(169.13 \text{ g mol}^{-1})} = 4.1 \times 10^{-4} \text{ mol}.$$

For this weak acid, the reaction table is:

	C ₅ H ₅ N ₄ O ₃	H ₂ O	-	H_3O^+	C ₅ H ₄ N ₄ O ₃ ⁻
initial	4.1×10 ⁻⁴	large		0	0
final	$(4.1\times10^{-4}) - (2.63\times10^{-5})$	large		2.63×10^{-5}	2.63×10^{-5}

The equilibrium constant K_{a1} is given by:

$$K_{a1} = \frac{[\mathrm{H_3O^+(aq)}][\mathrm{C_5H_4N_4O_3^-(aq)}]}{[\mathrm{C_5H_5N_4O_3(aq)}]} = \frac{(2.63 \times 10^{-5}) \times (2.63 \times 10^{-5})}{(3.9 \times 10^{-4})} = 1.8 \times 10^{-6}$$

Hence, $pK_{a1} = -\log_{10}K_{a1} = -\log_{10}(1.8 \times 10^{-6}) = 5.7$

Answer:
$$pK_{a1} = 5.7$$

The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL⁻¹. Calculate the solubility product constant, $K_{\rm sp}$, of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.

The formula mass of the monosodium salt, $NaC_5H_4N_4O_3$ is 22.99 (Na) + (5×12.01 (C)) + (4×1.008 (H)) + (4×14.01 (N)) + (3×16.00 (O)) = 191.112. The molar solubility is:

molar solubility =
$$\frac{\text{solubility}}{\text{formula mass}} = \frac{(8 \times 10^{-4} \text{ g mL}^{-1})}{(191.112 \text{ g mol}^{-1})}$$

= $= 4 \times 10^{-6} \text{ mol mL}^{-1} = 4 \times 10^{-3} \text{ M}$

Hence,
$$K_{\rm sp} = [{\rm Na}^+({\rm aq})][{\rm C}_5{\rm H}_4{\rm N}_4{\rm O}_3^-({\rm aq})] = (4 \times 10^{-3}) \times (4 \times 10^{-3}) = 2 \times 10^{-5}$$

Answer:
$$K_{sp} = 2 \times 10^{-5}$$

Suggest a possible reason why the pH of blood plasma remains near 7.4 even when saturated with uric acid.

Blood is buffered by a ${\rm CO_3}^{2-}/{\rm HCO_3}^-$ buffering system which resists changes in pH.