Answer:

• Calculate the molar solubility of silver sulfide, Ag₂S, given that K_{sp} is 8 × 10⁻⁵¹ at 25 °C.

Marks 3

•	Will AgCl precipitate if solutions of 25.0 mL of 2.0×10^{-5} M KCl and 75.0 of 1×10^{-5} M AgNO ₃ are added to one another? Show your reasoning. $K_{\rm sp}$ for AgCl = 1.8×10^{-10} at 25 °C.) mL Mar 2	·ks
	Answer:		

• A saturated solution of lithium carbonate in pure water at 20 °C contains 1.33 g of solute per 100.0 mL of solution. Calculate the aqueous solubility product of lithium carbonate at this temperature.

4

 $K_{\rm sp} =$

When the temperature of the same solution is raised to 40 $^{\circ}$ C, the solubility is reduced to 1.17 g per 100.0 mL of solution. What conclusions can be drawn about the sign of the standard enthalpy of dissolution of lithium carbonate?

• A standard test for the presence of chloride ion in water involves the appearance of a precipitate of AgCl upon addition of 0.05 mL of AgNO₃ (0.03 M) to 100 mL of sample. What is the minimum concentration of Cl⁻ detectable by this method? The $K_{\rm sp}$ of AgCl = 1.8×10^{-10} .

3

Answer:

• What is the molar solubility of Cu(OH) ₂ a	at 25 °C given its $K_{\rm sp} = 4.5 \times 10^{-21} \text{ M}^3$?	Marks 2
	Answer:	

• The molar solubility of lead(II) fluoride, PbF ₂ , is found to be 2.6×10^{-3} M at Calculate the value of K_{sp} for this compound at this temperature.	25 °C. Marks 2
$K_{\rm sp} =$	

•	The active ingredient in aspirin is the monoprotic acid, acetylsalicylic acid (HC ₉ H ₇ O ₄) that has a K_a of 3.3×10^{-4} M at 25 °C. What is the pH of a solution obtained when a tablet containing 200 mg of acetylsalicylic acid is dissolved in 125 mL of water?	Marks 3
	Answer:	
•	A standard test for the presence of chloride ion in water involves the appearance of a precipitate of AgCl upon addition of 1 mL of AgNO ₃ (0.03 M) to 100 mL of the water sample. What is the minimum concentration of Cl ⁻ detectable by this method? $K_{\rm sp}$ (AgCl) = 1.8×10^{-10} M ² .	2
	Answer:	

Uric acid, $C_{5}H_{5}N_{4}O_{3}$, is a weak diprotic acid with a low solubility of 70 mg L ⁻¹ . The extremely painful inflammation known as gout occurs when crystals of uric acid are deposited in the joints. Given that the pH of a saturated solution of uric acid is 4.58, calculate the p K_{a1} of uric acid at 25 °C? Answer: The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.
Answer: The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.
Answer: The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.
Answer: The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.
Answer: The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.
The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.
The monosodium salt of uric acid is slightly more soluble, 8×10^{-4} g mL ⁻¹ . Calculate the solubility product constant, K_{sp} , of sodium urate at 25 °C. Assume no hydrolysis of the urate ion occurs.
Answer: