•	In the electrolytic production of Al, what by a current of 1.8 A?	mass of Al can be deposited in 2.00 hours	2
		Answer:	
•	What products would you expect at the ar 1 M aqueous solution of NiI ₂ ? Explain yo		
			L

An electrochemica following initial co	It cell is consists of 1.0 L half-cells of Fe/Fe ²⁺ and Cd/Cd ²⁺ with the concentrations: $[Fe^{2+}] = 0.800 \text{ M}$, $[Cd^{2+}] = 0.200 \text{ M}$.	Marks 8
What is the initial	E _{cell} at 25 °C?	
	Answer:	
What is E_{cell} when	[Cd ²⁺] reaches 0.15 M?	
	Answer:	
What is [Cd ²⁺] wh	en E_{cell} reaches 0.015 V?	
	Answer:	
What are the equil	ibrium concentrations of both ions?	
$[Cd^{2+}] =$	$\lceil Fe^{2+} \rceil =$	

• What is the electrochemical potential of the following cell at 25 °C? Fe FeSO ₄ (0.010 M) (FeSO ₄ (0.100 M) Fe		
	71	
	Answer:	
• Calculate the mass of aluminium which of electricity that is used to produce 1.00 kg	can be produced with the same quantity of g of copper metal.	2
	Answer:	
Explain why Na(s) cannot be obtained by	y the electrolysis of aqueous NaCl solutions.	2

CHEM1612 2012-N-11 November 2012

•	A galvanic cell consists of a Cr^{3+}/Cr half- cell with $[Ni^{2+}] = 1.20$ M. The electromoto be 0.55 V. What is the concentration of	cell with unknown [Cr ³⁺] and a Ni ²⁺ /Ni half- tive force of the cell at 25 °C was measured of Cr ³⁺ in the Cr ³⁺ /Cr half-cell?	Marks 6
		Answer:	
	Calculate the equilibrium constant of the		
		Answer:	
	Calculate the standard Gibbs free energy	of the reaction at 25 °C.	
		Answer:	
1	Express the overall reaction in the shorthand voltaic cell notation.		

CHEM1612 2012-N-12 November 2012

• A strip of copper and a strip of zinc are embedded in a lemon, and are connected by wires to a voltmeter; a voltage is generated and can be read at the voltmeter. What chemical reactions are occurring that lead to the generation of current?			
	Assuming there are no losses in the circuit and the conditions are similar to standard, what voltage can be read at the voltmeter?		

Marks 4

CHEM1612 2010-N-10 November 2010

• How many minutes would be required to obtain 10.0 g of liquid mercury by passing a constant current of 0.17 A through a solution containing Hg ₂ (NO ₃) ₂ (aq)?		
	Answer:	

• Calculate ΔG° for the following reaction:		
$3Cu(s) + Cr^{3+}(aq)$	$3Cu^+(aq) + Cr(s)$	
	Answer:	
Is the reaction spontaneous under standar answer.	rd conditions? Give a reason for your	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• The standard reduction potential of phosphorous acid to hypophosphorous acid is -0.499 V, with the following half-reaction:

Marks 3

$$H_3PO_3(aq) + 2H^+(aq) + 2e^- \rightarrow H_3PO_2(aq) + H_2O(1)$$

What would the reduction potential be for this half reaction at a temperature of 25 $^{\circ}$ C in an aqueous solution with pH of 2.3 and concentrations of [H₃PO₃(aq)] = 0.37 M and [H₃PO₂(aq)] = 0.00025 M?

Answer:

• A number of bacteria can reduce the nitrate ion in the presence of sulfur. A simplified unbalanced redox reaction can be written as:

$$S(s) \ + \ NO_3^-(aq) \ \rightarrow \ SO_2(g) \ + \ NO(g)$$

Balance this redox equation for acidic conditions.

•	What is the value of the equilibrium constant for the following reaction at 298 K?	Marks 3
	$2Fe^{3+}(aq) + 3Sn(s) \rightarrow 2Fe(s) + 3Sn^{2+}(aq)$	
	Relevant electrode potentials can be found on the data page.	
	Answer:	

CHEM1612 2008-N-9 November 2008

•	• A galvanic cell is made of a Zn^{2+}/Zn half cell with $[Zn^{2+}] = 2.0$ M and an Ag^{+}/Ag half cell with $[Ag^{+}] = 0.050$ M. Calculate the electromotive force of the cell at 25 °C.		Marks 5
		Answer:	
	Calculate the equilibrium constant of the	reaction at 25 °C.	
		Answer:	
	Calculate the standard Gibbs free energy	of the reaction at 25 °C.	
		Answer:	
	Indicate whether the reaction is spontaneous or not. Give a reason for your answer.		
	Express the overall reaction in the shortha	and voltaic cell notation.	

A melt of NaCl is electrolysed for 35 minutes with a current of 3.50 A. Calculate the mass of sodium and volume of chlorine at 40 °C and 1.00 atm that are formed.

A concentration cell containing aqueous solutions of Cu(NO ₃) ₂ and solid copper metal is constructed so that the Cu ²⁺ ion concentration in the cathode half-cell is 0.66 M. Calculate the concentration of the Cu ²⁺ ion in the anode half-cell if the cell potential for the concentration cell at 25 °C is 0.03 V.	Marks 2
Answer:	
 In acid solution, dichromate ion oxidises iron(II) to iron(III) as illustrated in the partial equation:	3
What would happen to the cell potential if the concentration of Cr^{3+} were increased?	
The state of the s	

•	• How many minutes would be required to electroplate 25.0 g of manganese by passing a constant current of 4.8 A through a solution containing MnO ₄ ⁻ ?					
	Answer:					

The solubility product constant of AgCl is $K_{\rm sp} = 1.8 \times 10^{-10} \mathrm{M}^2$. Using the relevant electrode potentials found on the data page, calculate the reduction potential at 298 K of a half-cell formed by: (a) an Ag electrode immersed in a saturated solution of AgCl.					
(a) an rig electrode immersed in a se	attracted solution of rigel.				
	Answer:				
=	.5 M solution of KCl containing some AgCl				
precipitate.					
	Answer:				
	I to a standard Cu ²⁺ (1 M)/Cu(s) half-cell. In evidence of a reaction be seen? Describe the				

3

Answer:

•	Consider	the foll	owing	reaction	at 298 K	
---	----------	----------	-------	----------	----------	--

Marks 5

$$Ni^{2+}(aq) + Zn(s)$$
 \Longrightarrow $Ni(s) + Zn^{2+}(aq)$

Calculate $\Delta G^{\rm o}$ for the cell. (Relevant electrode potentials can be found on the data page.)

Answer:

What is the value of the equilibrium constant for the reaction at 298 K?

Answer:

Express the overall reaction in voltaic cell notation.

• Using a current of 2.00 A, how long (in minutes) will it take to plate out all of the silver from 0.250 L of a 1.14×10^{-2} M $Ag^{+}(aq)$ solution?

• Calculate the standard free-energy change for the following reaction at 298 K.						
$2Au(s) + 3Mg^{2+}(1.0 M) \rightarrow 2Au^{3+}(1.0 M) + 3Mg(s)$						
	Answer:					

Marks 2

•	Calculate the standard fre	ee-energy	change for	the following	reaction at 298 K.

2 Au(c) +	$3C_2^{2+}$	$(1.0 \text{ M}) \rightarrow$	2 A 11 ³⁺	(1.0 M)	+	3C2(c)
2Au(s) +	3Ca	$(1.0 \text{ M}) \rightarrow$	2Au	(1.0 M)	+	3Ca(s)

Answer:

Complete and balance the following equation for the reaction between iron(II) ions and permanganate ions in an acidic solution.

$$Fe^{2+}$$
 + $MnO_4^ \rightarrow$ Fe^{3+} + Mn^{2+}

• What is the value of the equilibrium constant for the following reaction at 298 K?

$$2Fe^{3+}(aq) + Sn(s)$$
 \implies $Sn^{2+}(aq) + 2Fe^{2+}(aq)$

Answer:

2

•	Consider t	he following	balanced	redox re	action.
---	------------	--------------	----------	----------	---------

$$2In(s) + 3MnO_2(s) + 12H^+(aq) \rightarrow 2In^{3+}(aq) + 3Mn^{2+}(aq) + 6H_2O$$

If $E^{0} = 1.568 \text{ V}$, what would be the measured potential of this cell at 298 K at the following concentrations?

$$[H^{+}(aq)] = 0.25 \text{ M}; \quad [In^{3+}(aq)] = 0.20 \text{ M}; \quad [Mn^{2+}(aq)] = 0.42 \text{ M}$$

Answer:

• What is the value of the equilibrium constant for the following reaction at 298 K?

$$Cu^{2+}(aq) + Zn(s) \rightarrow Zn^{2+}(aq) + Cu(s)$$

Relevant electrode potentials can be found on the data page.

2

Marks 2

Answer:

3

• Consider the following half-reactions and their standard reduction potentials.

$$2ClO_3^- + 12H^+ + 10e^- \rightarrow Cl_2 + 6H_2O$$

$$E^{\circ} = 1.47 \text{ V}$$

$$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$$

$$E^{\circ} = 2.01 \text{ V}$$

Give the overall cell reaction.

Calculate ΔG° and hence the value of K_c for the cell reaction at 298 K.

$$\Delta G^{\circ} =$$

$$K_{\rm c} =$$