• Consider the boiling points of the following hydrides:

compound	boiling point (K)
H_2O	373
HF	293
NH ₃	240
CH ₄	111

Explain the origin of the difference in boiling points between:

i) CH₄ and NH₃

The electronegativity of C and H are very similar so that the C-H bond has a very low polarity. The tetrahedral shape of CH_4 also means that there is no overall dipole moment. The only significant force existing between CH_4 molecules is dispersion. The small size of CH_4 means that dispersion interactions are very weak.

The N-H bond is quite polar due to the higher electronegativity of nitrogen. The pyramidal shape of NH₃ leads to a significant dipole moment with the nitrogen lone pair at one end and the hydrogen atoms, which bear a partial positive charge, at the other. There is significant H-bonding possible between NH₃ molecules as well as weak dispersion forces. The intermolecular forces are much stronger than in CH₄ and so NH₃ has a much higher boiling point.

ii) HF and NH₃

Fluorine is significantly more electronegative than nitrogen so the H-F bond is more polar than the N-H bonds. Very strong H-bonding occurs between HF molecules leading to its higher boiling point.

iii) H₂O and HF

Fluorine is more electronegative than oxygen so the H-F bond is also more polar than the O-H bonds leading to again stronger H-bonding between HF molecules. These interactions are so strong, however, that HF exists as H-bonded dimers (and even larger clusters) in the vapour whereas H_2O is only H-bonded in the liquid. As not all of the H-bonds need to be broken to boil HF, it actually has a lower boiling point than H_2O ,

ANSWER CONTINUES ON THE NEXT PAGE

Marks 3

3

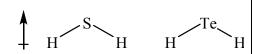
June 2003


• Which molecule in each of the following pairs has the greater dipole moment? Give reasons for your choice.

a) SO₂ or SO₃

 SO_2 has a larger dipole moment than SO_3 . Both have δ^+ S and δ^- O atoms. SO_2 is bent leading to the dipole shown. SO_3 is trigonal planar so that the individual dipoles on the S-O bonds cancel and the molecule has no dipole moment.

b) SiF₄ or SF₄


 SF_4 has a larger dipole moment than SiF_4 . Both have δ^-F with δ^+ Si and S respectively. The unsymmetrical 'see-saw' structure of SF_4 leads to an overall dipole, as shown. SiF_4 is tetrahedral so that the individual dipoles on the Si-F bonds cancel and the molecule has no dipole moment.

c) H₂S or H₂Te

 H_2S has a larger dipole moment than H_2Te . Both have δ^+H with δ^-S and Te respectively and are bent leading to overall dipoles, as shown.

S is more electronegative than Te so the partial negative charge on S is considerably bigger leading to a larger dipole moment.

