Marks • Balance the following nuclear reactions by identifying the missing nuclide. 3 $^{36}_{17}\text{Cl} + ^{0}_{-1}\text{e} \rightarrow$ ${}^{36}_{16}S$ $^{238}_{92}U \rightarrow ^4_2\alpha +$ ²³⁴₉₀Th ${}^{238}_{92}U \ + \ {}^{12}_{6}C \ \rightarrow \ 4{}^{1}_{0}n \ + \$ ²⁴⁶₉₈Cf The half life of 90 Sr is 29 years. Calculate the remaining activity (in Bq) of a sample containing 90 Sr after 100 years given that the initial activity was 1000 Bq. 2 From $t_{1/2} = \frac{\ln 2}{\lambda}$, $\lambda = \frac{\ln 2}{29} = 0.0239 \, \text{yr}^{-1}$. The activity after 100 years is related to the initial activity by: $\ln\left(\frac{A_0}{A}\right) = \lambda t = (0.0239) \times 100 = 2.39 \text{ so } \frac{A_0}{A} = e^{2.39}$ As $A_0 = 1000 \text{ Bq}$, $A_t = \frac{1000}{e^{2.39}} = 92 \text{ Bq}$ Answer: 92 Bg • The three unstable isotopes ${}^{33}_{17}$ Cl, ${}^{77}_{36}$ Kr and ${}^{27}_{12}$ Mg are unsuitable for use in medical 3 imaging. For each isotope, provide a reason why it is unsuitable. The following data may be of use: $^{33}_{17}\text{Cl} \rightarrow ^{0}_{+1}\text{e} + ^{33}_{16}\text{S}$ half-life = 2.5 s $^{77}_{36}$ Kr $\rightarrow ^{0}_{+1}e + ^{77}_{35}$ Br half-life = 75 minutes $^{27}_{12}Mg \rightarrow ^{0}_{-1}e + ^{27}_{13}Al$ half-life = 9.5 minutes ³³₁₇Cl - the half life of 2.5 s is too short to allow for synthesis of host molecules, administration of the nuclide to the patient and measurement of the radiation emitted. $^{77}_{36}$ Kr - krypton is a noble gas and cannot be incorporated into a suitable host

 $^{27}_{12}$ Mg - this nuclide is a β -emitter so little useful radiation would escape the body and local radiation damage would occur.

molecule for administration to the patient.