• The isotope ³⁷Ar has a half-life of 35 days. If each decay event releases an energy 3 of 1.0 MeV, calculate how many days it would take for a 0.10 g sample of ³⁷Ar to release 22.57×10^3 kJ (enough energy to boil 10.0 L of water)? 1.0 MeV = 1.0×10^6 eV corresponds to $(1.602 \times 10^{-19} \times 1.0 \times 10^6)$ J = 1.602×10^{-13} J. Each decay event releases 1.602×10^{-13} J and so to release 22.57×10^{3} kJ requires: number of decay events required = $\frac{22.57 \times 10^3 \times 10^3 \text{ J}}{1.602 \times 10^{-13} \text{ J}} = 1.409 \times 10^{20}$ 0.10 g of ³⁷Ag corresponds to $\frac{0.1 \text{ g}}{37 \text{ g mol}^{-1}} = 0.0027 \text{ mol.}$ This in turn corresponds to $(0.00270 \text{ mol} \times 6.022 \times 10^{23} \text{ mol}^{-1}) = 1.63 \times 10^{21} \text{ nuclei}. N_0 = 1.63 \times 10^{21}$ As the initial number of nuclei present is 1.63×10^{21} and the number of decay events required is 1.409×10^{20} , the final number of nuclei will be: $(1.63 \times 10^{21} - 1.409 \times 10^{20}) = 1.49 \times 10^{21} = N_t$ As the half life is 35 days, the decay constant is $\frac{\ln 2}{35 \text{ days}} = 0.0198 \text{ days}^{-1}$. Hence, $\ln\left(\frac{N_0}{N_t}\right) = \lambda t$ $\ln\left(\frac{1.63 \times 10^{21}}{1.40 \times 10^{21}}\right) = (0.0198 \text{ days}^{-1}) t$ t = 4.5 days Answer: 4.5 days • The isotope ²²²Rn decays to ²¹⁴Bi in three steps. Identify all possible decay paths for 3 this process, including all the intermediate isotopes along each path and the identity of

