The electronic energies of the molecular orbitals of diatomics consisting of atoms from H to Ne can be ordered as follows (with energy increasing from left to right):	Ma
$\sigma \ \sigma^* \ \sigma \ \sigma^* \ 2 \! \times \! \pi \ \sigma \ 2 \! \times \! \pi^* \ \sigma^*$	
(the '2×' denotes a pair of degenerate orbitals)	
Use this ordering of the molecular orbitals to identify the following species.	
 (i) The lowest molecular weight diatomic ion (homo- or heteronuclear) that has all of the following characteristics: a) a single negative charge, b) a bond order greater than zero <i>and</i> c) is diamagnetic. 	
HBe ⁻ has 6 electrons (1 from He, 4 from Be and 1 from the negative charge) so has a configuration $\sigma^2 \sigma^{*2} \sigma^2$. It has a bond order of 1 and is diamagnetic.	
(ii) A diatomic species that has the same electronic configuration as O_2 .	
There are many: simply substitute one or both O by a cation with the same number of electrons (F^+ , Ne^{2+} etc) or an anion with the same number of electrons (N^- , C^{2-} etc). For example: NO ⁻ , OF ⁺ , NF, F_2^{2+} , CN^{3-} , N_2^{2-}	
(iii) All of the atoms with atomic numbers less than or equal to 10 that cannot form stable, neutral, homonuclear diatomic molecules.	
The neutral, homonuclear diatomic molecule would have a bond order of zero: He, Be and Ne.	
He, Be and Ne. He ₂ $\sigma^2 \sigma^{*2}$ Be ₂ $\sigma^2 \sigma^{*2} \sigma^2 \sigma^{*2}$	_
He, Be and Ne. He ₂ $\sigma^2 \sigma^{*2}$ Be ₂ $\sigma^2 \sigma^{*2} \sigma^2 \sigma^{*2} \sigma^2 \sigma^{*2}$ Ne ₂ $\sigma^2 \sigma^{*2} \sigma^2 \sigma^{*2} \pi^4 \pi^{*4} \sigma^2 \pi^{*4} \sigma^{*2}$ Given that there are three degenerate <i>p</i> orbitals in an atom, why are there only two	_