	The electronic energies of the molecular orbitals of diatomics consisting of atoms from H to Ne can be ordered as follows (with energy increasing from left to right):	Marks 6
1.	$σ σ^* σ σ^* 2×π σ 2×π^* σ^*$	
	(the '2×' denotes a pair of degenerate orbitals)	
T	Use this ordering of the molecular orbitals to identify the following species.	
	i) The lowest molecular weight diatomic ion (homo- or heteronuclear) that has all of he following characteristics:	
t.	a) a single negative charge,	
	b) a bond order greater than zero <i>and</i>	
	c) is diamagnetic.	
(1	ii) A diatomic species that has the same electronic configuration as O_2 .	
	iii) All of the atoms with atomic numbers less than or equal to 10 that cannot form stable, neutral, homonuclear diatomic molecules.	
	Given that there are three degenerate p orbitals in an atom, why are there only two legenerate π orbitals in a diatomic molecule?	