How long does it take 1.0 g of 231 Th to decay to the same activity as 1.0 g of 232 Th?

Marks 3

The half life of 231 Th is *very* short compared to that of 232 Th. All of the 231 Th will decay to 231 Pa in the time it takes for the 231 Th decay. Thus, the activity of 1.0 g of 231 Th will actually correspond to the activity of 231 Pa.

From 2010-J-4, the activity of 1.0 g of 232 Th is 4.1×10^3 Bq and the activity of 1.0 g of 231 Pa is 1.8×10^9 Bq. The time, t, it takes for the activity of 231 Pa to fall from 1.8×10^9 (A_0) to 4.1×10^3 Bq (A_t) needs to be calculated.

The number of nuclei varies with time according to $ln(N_0/N_t) = \lambda t$. As activity is directly proportional to the number of nuclei, this can be rewritten in terms of activities:

$$\ln(A_0/A_t) = \lambda t = (\ln 2/t_{1/2}) \times t$$

Thus,

$$\ln(1.8 \times 10^9 / 4.1 \times 10^3) = \ln(2/(3.27 \times 10^4 \times 365.25 \times 60 \times 60 \text{ s}) \times t$$
$$t = 1.93 \times 10^{13} \text{ s} = 6.1 \times 10^5 \text{ years}$$

Answer: 6.1×10^5 years