• Calculate the activity (in Bq) of a 1.00 g sample of ¹³⁷Cs¹³¹I, if the half lives of the caesium and iodine are 30.17 years and 8.02 days respectively.

Marks 8

The molar mass of 137 Cs 131 I is (137 + 131) g mol $^{-1}$ = 268 g mol $^{-1}$. As each mole of 137 Cs 131 I contains one mole of 137 Cs and one moles of 131 I:

number of moles of
137
Cs = number of moles of 131 I = mass / molar mass = 1.00 g / 268 g mol $^{-1}$ = 0.00373 mol

Each mole contains Avogadro's number of nuclei so:

number of nuclei of
137
Cs = number of nuclei of 131 I = number of moles $\times N_A$
= 0.00373 mol \times 6.022 \times 10²³ mol⁻¹
= 2.25 \times 10²⁵

The activity coefficient, λ , is related to the half life, $t_{1/2}$, through $\lambda = \ln 2 / t_{1/2}$. Hence:

$$\lambda$$
 (137 Cs) = ln 2 / (30.17 × 365 × 24 × 60 × 60 s) = 7.28 × 10 $^{-10}$ s⁻¹ λ (131 I) = ln 2 / (8.02 × 24 × 60 × 60 s) = 1.00 × 10 $^{-6}$ s⁻¹

The activity, A, is related to the number of nuclei, N, through $A = \lambda N$ and so:

$$A (^{137}\text{Cs}) = (7.28 \times 10^{-10} \text{ s}^{-1}) \times (2.25 \times 10^{25} \text{ nuclei}) = 1.64 \times 10^{12} \text{ Bq}$$

 $A (^{131}\text{I}) = (1.00 \times 10^{-6} \text{ s}^{-1}) \times (2.25 \times 10^{25} \text{ nuclei}) = 2.25 \times 10^{15} \text{ Bq}$

As might have been anticipated from the relative sizes of the half lives, the activity is completely dominated by ¹³¹I:

Overall activity =
$$A(^{137}Cs) + A(^{131}I) = 2.25 \times 10^{15} \text{ Bq}$$

Answer: $2.25 \times 10^{15} \text{ Bq}$

Both nuclides in ¹³⁷Cs¹³¹I are beta emitters, and the daughter nuclides are stable. Describe the sample after it has been melted and allowed to resolidify after (a) 3 months and (b) 300 years.

The products formed by beta emission are:

$$^{137}_{55}\text{Cs} \rightarrow ^{137}_{56}\text{Ba} + ^{0}_{-1}\beta$$
 $^{131}_{53}\text{I} \rightarrow ^{131}_{54}\text{Xe} + ^{0}_{-1}\beta$

The ¹³¹I decays to ¹³¹Xe which, being a gas, escapes on melting.

- (a) As the half life of ¹³¹I is only 8.02 days, after 3 months most of it will have decayed. As the half life of ¹³⁷Cs is 30.17 years, after 3 months little will have decay. The sample will be mainly ¹³⁷Cs with a little ¹³⁷Ba.
- (b) After 300 years, the sample will be mainly ¹³⁷Ba with a little bit of ¹³⁷Cs remaining.