Marks

6

• In March 2011 after a tsunami flooded the Fukushima Daiichi nuclear power plant, three of the six reactors went into meltdown, and by 31 March had released large quantities of the nuclides detailed in the table below.

Radioisotope	Initial activity of quantity released (10 ¹⁵ Bq)	Half-life
¹³¹ I	511	8.02 days
¹³⁷ Cs	13.6	30.17 years

Given that the only stable nuclide of iodine is 127 I, would you expect the primary decay mechanism for 131 I to be α , β^- , or β^+ decay? Briefly explain your reasoning.

¹³¹I has Z = 53 and N = 78 giving an N / Z ratio of 1.47. This ratio suggests that β^- will be the primary decay mechanism. α becomes impoortant after Z = 82.

This decay route will lower this ratio as it involves a neutron being converted into a proton and a β^- particle: *N* will decrease by 1 and *Z* will increase by 1.

Calculate the decay constant for ¹³¹I.

The decay constant, λ , is related to the half life, $t_{1/2} = \ln 2 / \lambda$:

 $\lambda = \ln 2 / t_{1/2} = \ln 2 / (8.02 \times 24 \times 60 \times 60) \text{ s}^{-1} = 1.00 \times 10^{-6} \text{ s}^{-1}$

Answer: $1.00 \times 10^{-6} \text{ s}^{-1}$

Calculate the initial mass of ¹³¹I released.

The initial activity of ¹³¹I is 511 × 10¹⁵ Bq or 511 × 10¹⁵ nuclei s⁻¹. As activity, $A = \lambda N$:

 $N = A / \lambda = 511 \times 10^{15}$ nuclei s⁻¹ / 1.00 × 10⁻⁶ s⁻¹ = 5.11 × 10²³ nuclei

The molar mass of 131 I is 131 g mol⁻¹ so 6.022×10^{23} nuclei has a mass of 131 g. Therefore:

 5.11×10^{23} nuclei corresponds to $5.11 \times 10^{23} / 6.022 \times 10^{23} \times 131$ g = 111 g

Answer: 111 g

THIS QUESTION CONTINUES ON THE NEXT PAGE.

activities:

Activities	¹³¹ I: 3.80 × 10⁻²⁴ Bq	¹³⁷ Cs: 1.27 × 10 ¹⁶ Bq
------------	--	---

Caesium has no biological role in the human body, and is usually only present in trace amounts. On ingestion, even non-radioactive Cs isotopes are considered toxic as they are capable of partially substituting for chemically similar elements. Name a chemically similar element. State one chemically-significant difference between ions of this element and Cs^+ ions.

As a +1 ion, Cs^+ is chemically similar to Na^+ and K^+ .

Cs⁺ is larger than either of these ions. This will lead it to have higher coordination numbers: more anions will fit around it in ionic solids and more donor atoms (such as OH₂) will coordinate to it than can fit on Na⁺ or K⁺.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Marks • Calculate the activity (in Bq) of a 1.00 g sample of ${}^{137}Cs^{131}I$, if the half lives of the 8 caesium and iodine are 30.17 years and 8.02 days respectively. The molar mass of ${}^{137}Cs^{131}I$ is (137 + 131) g mol⁻¹ = 268 g mol⁻¹. As each mole of ${}^{137}Cs^{131}I$ contains one mole of ${}^{137}Cs$ and one moles of ${}^{131}I$: number of moles of ^{137}Cs = number of moles of ^{131}I = mass / molar mass $= 1.00 \text{ g} / 268 \text{ g mol}^{-1} = 0.00373 \text{ mol}$ Each mole contains Avogadro's number of nuclei so: number of nuclei of 137 Cs = number of nuclei of 131 I = number of moles × N_A $= 0.00373 \text{ mol} \times 6.022 \times 10^{23} \text{ mol}^{-1}$ $= 2.25 \times 10^{25}$ The activity coefficient, λ , is related to the half life, $t_{1/2}$, through $\lambda = \ln 2 / t_{1/2}$. Hence: λ (¹³⁷Cs) = ln 2 / (30.17 × 365 × 24 × 60 × 60 s) = 7.28 × 10⁻¹⁰ s⁻¹ λ (¹³¹I) = ln 2 / (8.02 × 24 × 60 × 60 s) = 1.00 × 10⁻⁶ s⁻¹ The activity, A, is related to the number of nuclei, N, through $A = \lambda N$ and so: $A (^{137}Cs) = (7.28 \times 10^{-10} s^{-1}) \times (2.25 \times 10^{25} \text{ nuclei}) = 1.64 \times 10^{12} \text{ Bq}$ $A (^{131}I) = (1.00 \times 10^{-6} s^{-1}) \times (2.25 \times 10^{25} \text{ nuclei}) = 2.25 \times 10^{15} \text{ Bq}$ As might have been anticipated from the relative sizes of the half lives, the activity is completely dominated by ¹³¹I: Overall activity = $A(^{137}Cs) + A(^{131}I) = 2.25 \times 10^{15}$ Bq Answer: 2.25×10^{15} Bg Both nuclides in ¹³⁷Cs¹³¹I are beta emitters, and the daughter nuclides are stable. Describe the sample after it has been melted and allowed to resolidify after (a) 3 months and (b) 300 years. The products formed by beta emission are: ${}^{137}_{55}\text{Cs} \rightarrow {}^{137}_{56}\text{Ba} + {}^{0}_{-1}\beta \qquad {}^{131}_{53}\text{I} \rightarrow {}^{131}_{54}\text{Xe} + {}^{0}_{-1}\beta$ The ¹³¹I decays to ¹³¹Xe which, being a gas, escapes on melting. (a) As the half life of 131 I is only 8.02 days, after 3 months most of it will have decayed. As the half life of ¹³⁷Cs is 30.17 years, after 3 months little will have decay. The sample will be mainly 137 Cs with a little 137 Ba. (b) After 300 years, the sample will be mainly ¹³⁷Ba with a little bit of ¹³⁷Cs remaining.

Marks The generation of energy in a nuclear reactor is largely based on the fission of either 8 ²³⁵U or ²³⁹Pu. The fission products include every element from zinc through to the *f*-block. Explain why most of the radioactive fission products are β -emitters. The optimal neutron : proton ratio increases as Z increases. Splitting a large nucleus in two will almost certainly produce nuclides with similar neutron : proton ratios to the parent, which will now be too high. They will emit negative charge to convert neutrons to protons, bringing about a more satisfactory neutron : proton ratio. *i.e.* they will be β emitters. Much of the fission yield is concentrated in two peaks, one in the second transition row and the other later in the periodic table. Identify the missing "sister" products of the following daughter nuclides of 235 U by writing balanced nuclear equations. The fission reactions are triggered by the absorption of one neutron, and release three neutrons upon disintegration of the short-lived ²³⁶U nucleus. ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{141}_{56}Ba + {}^{92}_{36}Kr + 3{}^{1}_{0}n$ 141 Ba ⁹⁵Sr ${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{95}_{38}Sr + {}^{138}_{54}Xe + 3{}^{1}_{0}n$ Many of the fission products are short lived, and spent fuel rods are eventually contaminated by longer-lived species. The radioactivity of spent fuel can be modelled simply by the exponential decay of the 137 Cs and 90 Sr. The % yields and half lives of these nuclides are given in the table. nuclide %Yield per fission event Half-life (years) ⁹⁰Sr 4.505 28.9 ¹³⁷Cs 6.337 30.23 After use, nuclear fuel rods are stored in ponds of cooling water, awaiting safe disposal. If 3 % of the mass of used fuel rods consists of fission products of ²³⁵U and ²³⁹Pu, what percentage of the mass is made up by each of these nuclides? Using: percentage mass = percentage yield \times (atomic mass / 235) \times 3% 90 Sr = 0.04505 × (90/235) × 0.03 × 100% = 0.05% 0^{137} Cs = 0.06337 × (137/235) × 0.03 × 100% = 0.11% ⁹⁰Sr: **0.05%** ¹³⁷Cs[.] 0.11% THIS QUESTION CONTINUES ON THE NEXT PAGE.

$$A_{\rm t} = (1 \times 10^6) \times (3.19 \times 10^{12}) \times (0.11 / 100) \exp(-100 \times \ln 2 / 30.23)$$
 Bq
= 3.5×10^{14} Bq

The total activity is therefore $(2.3 \times 10^{14} + 3.5 \times 10^{14})$ Bq = 6×10^{14} Bq

Answer: 6×10^{14} Bq

How long does it take 1.0 g of 231 Th to decay to the same activity as 1.0 g of 232 Th?	Marks 3
The half life of ²³¹ Th is <i>very</i> short compared to that of ²³² Th. <i>All</i> of the ²³¹ Th will decay to ²³¹ Pa in the time it takes for the ²³¹ Th decay. Thus, the activity of 1.0 g of ²³¹ Th will actually correspond to the activity of ²³¹ Pa.	
From 2010-J-4, the activity of 1.0 g of ²³² Th is 4.1×10^3 Bq and the activity of 1.0 g of ²³¹ Pa is 1.8×10^9 Bq. The time, <i>t</i> , it takes for the activity of ²³¹ Pa to fall from 1.8×10^9 (A_0) to 4.1×10^3 Bq (A_t) needs to be calculated.	
The number of nuclei varies with time according to $\ln(N_0/N_t) = \lambda t$. As activity is directly proportional to the number of nuclei, this can be rewritten in terms of activities:	
$\ln(A_0/A_t) = \lambda t = (\ln 2/t_{1/2}) \times t$	
Thus,	
$\ln(1.8 \times 10^9 / 4.1 \times 10^3) = \ln 2 / (3.27 \times 10^4 \times 365.25 \times 60 \times 60 \text{ s}) \times t$	
$t = 1.93 \times 10^{13} \text{ s} = 6.1 \times 10^5 \text{ years}$	
Answer: 6.1×10^5 years	

• The isotope ³⁷Ar has a half-life of 35 days. If each decay event releases an energy 3 of 1.0 MeV, calculate how many days it would take for a 0.10 g sample of ³⁷Ar to release 22.57×10^3 kJ (enough energy to boil 10.0 L of water)? 1.0 MeV = 1.0×10^6 eV corresponds to $(1.602 \times 10^{-19} \times 1.0 \times 10^6)$ J = 1.602×10^{-13} J. Each decay event releases 1.602×10^{-13} J and so to release 22.57×10^{3} kJ requires: number of decay events required = $\frac{22.57 \times 10^3 \times 10^3 \text{ J}}{1.602 \times 10^{-13} \text{ J}} = 1.409 \times 10^{20}$ 0.10 g of ³⁷Ag corresponds to $\frac{0.1 \text{ g}}{37 \text{ g mol}^{-1}} = 0.0027 \text{ mol.}$ This in turn corresponds to $(0.00270 \text{ mol} \times 6.022 \times 10^{23} \text{ mol}^{-1}) = 1.63 \times 10^{21} \text{ nuclei}. N_0 = 1.63 \times 10^{21}$ As the initial number of nuclei present is 1.63×10^{21} and the number of decay events required is 1.409×10^{20} , the final number of nuclei will be: $(1.63 \times 10^{21} - 1.409 \times 10^{20}) = 1.49 \times 10^{21} = N_t$ As the half life is 35 days, the decay constant is $\frac{\ln 2}{35 \text{ days}} = 0.0198 \text{ days}^{-1}$. Hence, $\ln\left(\frac{N_0}{N_t}\right) = \lambda t$ $\ln\left(\frac{1.63 \times 10^{21}}{1.40 \times 10^{21}}\right) = (0.0198 \text{ days}^{-1}) t$ t = 4.5 days Answer: 4.5 days • The isotope ²²²Rn decays to ²¹⁴Bi in three steps. Identify all possible decay paths for 3 this process, including all the intermediate isotopes along each path and the identity of

In the spaces provided, explain the meaning of the following term. You may use an example, equation or diagram where appropriate.
half-life

The time required for a material to decay to half its initial amount. Half-life is commonly used as a measure of radioactivity but is also used in studying the decrease in concentration of other materials during chemical or biochemical reactions.

Marks • Explain why a sustained fission chain reaction can only occur when a critical mass is prepared.

Below the critical mass, so many neutrons are lost from the material that a chain reaction cannot be sustained.

• The half life of ³H is 12 years. Calculate how long it takes (rounded to the nearest year) for the activity of a sample of tritium to have dropped to 0.1% of its original value.

From
$$t_{1/2} = \frac{\ln 2}{\lambda}$$
, the activity coefficient $\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{12 \text{ years}} = 0.058 \text{ years}^{-1}$

As the activity is directly proportional to the number of radioactive nuclei, the activity, A_t , at time *t* is related to the initial activity, A_0 , by $\ln\left(\frac{A_0}{A_1}\right) = \lambda t$

With
$$A_t = 0.001 \times A_o$$
, the ratio $\frac{A_0}{A_t} = 1000$. Hence,

 $\ln(1000) = (0.058)t$ or t = 120 years $= 1.2 \times 10^2$ years

Answer:
$$1.2 \times 10^2$$
 years

• Consider the following list of unstable isotopes and their decay mechanisms.

 $^{33}_{17}\text{Cl} \rightarrow ^{0}_{+1}\text{e} + ^{33}_{16}\text{S}$ half-life = 2.5 s $^{32}_{15}P \rightarrow ^{0}_{-1}e + ^{32}_{16}S$ half-life = 14.3 days $^{199}_{82}$ Pb $\rightarrow ^{0}_{+1}$ e + $^{199}_{81}$ Tl half-life = 90 minutes $^{13}_{7}N \rightarrow ^{0}_{+1}e + ^{13}_{6}C$ half-life = 10 minutes

From this list, select the isotope that best satisfies the following requirements. Provide a reason for your choice in each case.

Requirement	Isotope	Reason for choice
Isotope used in medical imaging	¹³ ₇ N	Positron emitter, non-toxic and has sufficiently long half life to be chemically incorporated.
Decay represents the transformation of a neutron into a proton	³² ₁₅ P	This nuclide is a β -emitter. The nuclear charge increases from 15 to 16 and the mass is unaffected. The charge is conserved by the emission of an electron.
The isotope with the highest molar activity	³⁵ 17Cl	It has the shortest half-life and, as $\lambda = \frac{\ln 2}{t_{1/2}}$. it therefore has the highest activity.

3

2

• In the spaces provided, explain the meaning of the following term. You may use an example, equation or diagram where appropriate.	Marks 1
nucleogenesis	
The generation of heavier nuclei by the fusion of lighter nuclei.	

2007-J-3 June 2007 Marks • Balance the following nuclear reactions by identifying the missing nuclide. 3 $^{36}_{17}\text{Cl} + ^{0}_{-1}\text{e} \rightarrow$ ³⁶₁₆S $^{238}_{92}U \rightarrow ^4_2\alpha +$ ²³⁴₉₀Th ${}^{238}_{92}U \ + \ {}^{12}_{6}C \ \rightarrow \ 4{}^{1}_{0}n \ + \$ ²⁴⁶₉₈Cf The half life of 90 Sr is 29 years. Calculate the remaining activity (in Bq) of a sample containing 90 Sr after 100 years given that the initial activity was 1000 Bq. 2 From $t_{1/2} = \frac{\ln 2}{\lambda}$, $\lambda = \frac{\ln 2}{29} = 0.0239 \, \text{yr}^{-1}$. The activity after 100 years is related to the initial activity by: $\ln\left(\frac{A_0}{A}\right) = \lambda t = (0.0239) \times 100 = 2.39 \text{ so } \frac{A_0}{A} = e^{2.39}$ As $A_0 = 1000 \text{ Bq}$, $A_t = \frac{1000}{e^{2.39}} = 92 \text{ Bq}$ Answer: 92 Bg • The three unstable isotopes ${}^{33}_{17}$ Cl, ${}^{77}_{36}$ Kr and ${}^{27}_{12}$ Mg are unsuitable for use in medical 3 imaging. For each isotope, provide a reason why it is unsuitable. The following data may be of use: $^{33}_{17}\text{Cl} \rightarrow ^{0}_{+1}\text{e} + ^{33}_{16}\text{S}$ half-life = 2.5 s $^{77}_{36}$ Kr $\rightarrow ^{0}_{+1}e + ^{77}_{35}$ Br half-life = 75 minutes $^{27}_{12}Mg \rightarrow ^{0}_{-1}e + ^{27}_{13}Al$ half-life = 9.5 minutes ³³₁₇Cl - the half life of 2.5 s is too short to allow for synthesis of host molecules, administration of the nuclide to the patient and measurement of the radiation emitted. $^{77}_{36}$ Kr - krypton is a noble gas and cannot be incorporated into a suitable host

 $^{27}_{12}$ Mg - this nuclide is a β -emitter so little useful radiation would escape the body and local radiation damage would occur.

molecule for administration to the patient.

2006-J-3

• Balance the following nuclear reactions by identifying the missing nuclide.

	$_{26}^{55}\mathrm{Fe}$ + $_{-1}^{0}\mathrm{e}$ \rightarrow	⁵⁵ ₂₅ Mn
	$^{^{63}}_{^{28}}Ni \ \rightarrow \ ^{^{63}}_{^{29}}Cu \ +$	⁰ ₋₁ β
²⁸ ₁₄ Si	$+ \ \ {}^2_1 H \ \ \rightarrow \ \ {}^1_0 n \ + \ \ $	²⁹ ₁₅ P

• Identify the decay mechanism for the following three unstable nuclides given that the only stable isotopes of Pr and Eu are ${}^{141}_{59}$ Pr , ${}^{151}_{63}$ Eu and ${}^{153}_{63}$ Eu. There are no stable isotopes of Rn.

Isotope	Nuclear Decay Mechanism
¹⁴² ₅₉ Pr	Stable nucleus has fewer neutrons: <u>β⁻ decay</u>
¹⁵⁰ ₆₃ Eu	Stable nucleus has more neutrons: <u>β⁺ decay or e⁻ capture</u>
²²² ₈₆ Rn	α decay

3

Marks

3

Marks • Balance the following nuclear reactions by identifying the missing nuclide. 3 $_{26}^{55}$ Fe + $_{-1}^{0}$ e \rightarrow ⁵⁵₂₅Mn ²²⁸₈₈Ra $^{232}_{90}$ Th \rightarrow $^4_2\alpha$ + $^{218}_{84}$ Po \rightarrow $^{0}_{-1}e$ + ²¹⁸₈₅At 2 Over 50 years, the activity of a sample of strontium-90 decreases from 1000 Bq to ٠ 303 Bq. Calculate the half-life of strontium-90 (in years) to the nearest year. The number of radioactive nuclei N decreases with time according to the equation, $\ln(\frac{N_0}{N_{\star}}) = \lambda t$ where λ is the decay constant. As activity is proportional to the number of nuclei, the decay constant can be calculated from ratios of the activities: $\ln(\frac{1000}{303}) = \lambda \times 50 = 1.194$ Hence, $\lambda = 0.0239$ year⁻¹. The half life is related to the decay constant by: $t_{1/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{0.0239} = 29$ years Answer: 29 years 3 ٠ Identify three desirable properties of an unstable isotope to be used in medical imaging. • non-toxic either a γ or β^+ emitter (not an α or β^- emitter) ٠ half-life within range of 1 minute to 10 hours ٠ chemically capable of being incorporated into appropriate molecule ٠ easily produced or produced onsite •

2004-J-3

- Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide. $\begin{array}{rrr} 3^{36}_{17}\text{Cl} + \begin{smallmatrix} 0\\ -1 \text{e} & \rightarrow \\ \hline 16\text{S} \\ \hline 10\text{n} \\ 10\text{n} \\ \hline 10\text{n} \\ 10\text{n} \hline 10\text{n} \\ 10\text{n} \hline 10\text{n} \\ 10\text{n} \\ 10\text{n} \hline 10\text{n} \hline 10\text{n} \\ 10\text{n} \hline 10\text{n} \hline$
 - $^{99}_{42}$ Mo \rightarrow $^{0}_{-1}e$ + 99_{43} Tc
- The half-life of plutonium-239 is 24110 years. How many years (to the nearest year) must pass after $^{239}_{94}$ Pu is produced for the number of $^{239}_{94}$ Pu atoms to decay to 0.01000 of the original number?

The number of radioactive nuclei N decreases with time according to the equation,

$$\ln(\frac{N_0}{N_t}) = \lambda t$$

where λ is the decay constant. The decay constant is related to the half life by

$$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{24110} = 2.875 \times 10^{-5} \text{ years}^{-1}$$

If $N_t = 0.01N_0$ then:

$$\ln(\frac{1}{0.01}) = 2.875 \times 10^{-5} \, \mathrm{t}$$

Hence, t = 160, 183 years.

Answer: t = 160, 183 years

• Provide a brief explanation of the process by which nuclear radiation causes biological damage.

Nuclear radiation is of sufficient energy to ionise atoms in living tissues. The free radicals thus formed are highly reactive (due to having unpaired electrons) and cause unwanted chemical reactions in the tissues. This in turn can lead to cell damage, destruction of DNA, etc.

3

2

• Tritium, ³₁H, in nuclear warheads decays with a half life of 12.26 years and must be replaced. What fraction of the tritium is lost in 5.0 years?

The number of radioactive nuclei N decreases with time according to the equation,

$$\ln(\frac{N_0}{N_t}) = \lambda t$$

where λ is the decay constant. The decay constant is related to the half life by

$$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{12.26} = 0.05654 \, \text{years}^{-1}$$

After 5 years,

$$\ln(\frac{N_0}{N_t}) = 0.05654 \times 5.0 = 0.28$$

or
$$\frac{N_0}{N_t} = e^{0.28} = 1.3$$

$$\frac{0}{N_t} = e^{0.2t}$$

The fraction remaining is therefore $\frac{N_t}{N_0} = 0.75$ and so 0.25 or 25% is lost.

ANSWER: 0.25 or 25%