THIS QUESTION CONTINUES ON THE NEXT PAGE.

Answer:

Marks 6

CHEM190	1/3	2014-J-3	June 2014	
monitor the expe	the relative activities of th	e different nu f these nuclid	onuclide leaks are occurring is to clides as a function of time. Calculate es exactly 3 years after the release. the reactors.	Mai 6
Activities	¹³¹ I:		¹³⁷ Cs:	
amounts are capal chemica	. On ingestion, even non- ble of partially substituting	radioactive Cs g for chemical	ly, and is usually only present in trace isotopes are considered toxic as they ly similar elements. Name a y-significant difference between ions	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

rks

June 2013 CHEM1901/3 2013-J-2

•	Calculate the activity (in Bq) of a 1.00 g s caesium and iodine are 30.17 years and 8.	sample of ¹³⁷ Cs ¹³¹ I, if the half lives of the 02 days respectively.	Marks 8
		Answer:	
	Both nuclides in ¹³⁷ Cs ¹³¹ I are beta emitter. Describe the sample after it has been melt (a) 3 months and (b) 300 years.		

CHEM1901		2012-J-4		June 2012	
²³⁵ U or ²³⁹	Pu. The fissi	gy in a nuclear reactor is la on products include every nost of the radioactive fissi	element from zinc thr	ough to the	Marks 8
row and the foll The fission	ne other later owing daught n reactions ar	ld is concentrated in two point the periodic table. Identer nuclides of ²³⁵ U by write triggered by the absorption of the short-liv	ify the missing "sister ing balanced nuclear of on of one neutron, and	er" products equations.	
¹⁴¹ Ba					
⁹⁵ Sr					
contamina modelled	nted by longer simply by the	educts are short lived, and so relived species. The radioa exponential decay of the des are given in the table.	ctivity of spent fuel ca	an be	
	nuclide	%Yield per fission event	Half-life (years)		
	⁹⁰ Sr	4.505	28.9		
	¹³⁷ Cs	6.337	30.23		
disposal.	If 3 % of the	rods are stored in ponds of mass of used fuel rods con tage of the mass is made up	sists of fission produc	ts of ²³⁵ U	
⁹⁰ Sr:		¹³⁷ Cs:			

What are the specific activities	es of ⁹⁰ Sr and ¹³⁷ Cs in Bq g ⁻¹ ?	Marks 8
⁹⁰ Sr: Assuming the majority of the what will be the activity of a	activity of a spent fuel rod to be due to these nucl tonne fuel rod 100 years after placing it in the p	clides, bond?
	Answer:	

CHEM1901/3 2010-J-5 June 2010

How long does it take 1.0 g of ²³¹ Th to de	ecay to the same activity as 1.0 g of ²³² Th?	Marks 3
		_
	Answer:	

•	The isotope 37 Ar has a half-life of 35 days. If each decay event releases an energy of 1.0 MeV, calculate how many days it would take for a 0.10 g sample of 37 Ar to release 22.57×10^3 kJ (enough energy to boil 10.0 L of water)?	Marks 3
	Answer:	
•	The isotope ²²² Rn decays to ²¹⁴ Bi in three steps. Identify all possible decay paths for this process, including all the intermediate isotopes along each path and the identity of the decay process involved in each individual step.	3

• In the spaces provided, explain the meaning of the following term. You may use an example, equation or diagram where appropriate.	Marks 1
half-life	

• Explain why a sustained fission chain reaction can only occur when a critical mass is prepared.

Marks 2

• The half life of ³H is 12 years. Calculate how long it takes (rounded to the nearest year) for the activity of a sample of tritium to have dropped to 0.1% of its original value.

2

Answer:

• Consider the following list of unstable isotopes and their decay mechanisms.

3

$$^{33}_{17}\text{Cl} \rightarrow ^{0}_{+1}\text{e} + ^{33}_{16}\text{S}$$

half-life =
$$2.5 \text{ s}$$

$$^{32}_{15}P$$
 \rightarrow $^{0}_{-1}e$ + $^{32}_{16}S$ half-life = 14.3 days

$$^{199}_{82}\text{Pb}$$
 \rightarrow $^{0}_{+1}\text{e}$ + $^{199}_{81}\text{Tl}$ half-life = 90 minutes

$$^{13}_{7}N \rightarrow ^{0}_{+1}e + ^{13}_{6}C$$

half-life = 10 minutes

From this list, select the isotope that best satisfies the following requirements. Provide a reason for your choice in each case.

Requirement	Isotope	Reason for choice
Isotope used in medical imaging		
Decay represents the transformation of a neutron into a proton		
The isotope with the highest molar activity		

• In the spaces provided, explain the meaning of the following term. You may use an example, equation or diagram where appropriate.	Marks 1
nucleogenesis	1

Marks

3

• Balance the following nuclear reactions by identifying the missing nuclide.

 $^{36}_{17}\text{Cl} + ^{0}_{-1}\text{e} \rightarrow$

$$^{238}_{92}$$
U \rightarrow $^{4}_{2}\alpha$ +

$$^{238}_{92}$$
U + $^{12}_{6}$ C \rightarrow 4 $^{1}_{0}$ n +

• The half life of ⁹⁰Sr is 29 years. Calculate the remaining activity (in Bq) of a sample containing ⁹⁰Sr after 100 years given that the initial activity was 1000 Bq.

Answer:

• The three unstable isotopes $^{33}_{17}$ Cl, $^{77}_{36}$ Kr and $^{27}_{12}$ Mg are unsuitable for use in medical imaging. For each isotope, provide a reason why it is unsuitable. The following data may be of use:

$$^{33}_{17}\text{Cl}$$
 \rightarrow $^{0}_{+1}\text{e}$ + $^{33}_{16}\text{S}$ half-life = 2.5 s

$$^{77}_{36}\mathrm{Kr} \rightarrow ^{0}_{+1}\mathrm{e} + ^{77}_{35}\mathrm{Br}$$
 half-life = 75 minutes

$$^{27}_{12} \text{Mg} \rightarrow ^{0}_{-1} \text{e} + ^{27}_{13} \text{Al} \quad \text{half-life} = 9.5 \text{ minutes}$$

2

Marks

3

• Balance the following nuclear reactions by identifying the missing nuclide.

$$_{26}^{55}$$
Fe + $_{-1}^{0}$ e \rightarrow

$$^{63}_{28}$$
Ni \rightarrow $^{63}_{29}$ Cu +

$$^{28}_{14}\mathrm{Si} + ^{2}_{1}\mathrm{H} \rightarrow ^{1}_{0}\mathrm{n} +$$

• Identify the decay mechanism for the following three unstable nuclides given that the only stable isotopes of Pr and Eu are $^{141}_{59}$ Pr, $^{151}_{63}$ Eu and $^{153}_{63}$ Eu. There are no stable isotopes of Rn.

Isotope	Nuclear Decay Mechanism
¹⁴² ₅₉ Pr	
¹⁵⁰ ₆₃ Eu	
²²² ₈₆ Rn	

• Balance the following nuclear reactions by identifying the missing nuclide.

 $^{55}_{26}$ Fe + $^{0}_{-1}$ e \rightarrow

 $^{232}_{90}$ Th \rightarrow $^{4}_{2}\alpha$ +

 $^{218}_{94}$ Po \rightarrow $^{0}_{1}$ e +

• Over 50 years, the activity of a sample of strontium-90 decreases from 1000 Bq to 303 Bq. Calculate the half-life of strontium-90 (in years) to the nearest year.

2

Marks

3

Answer:

• Identify three desirable properties of an unstable isotope to be used in medical imaging.

• Balance the following nuclear reactions by identifying the missing nuclear particle or nuclide.

Marks 3

$${}^{36}_{17}Cl + {}^{0}_{-1}e \rightarrow$$

$${}^{236}_{92}U \rightarrow {}^{92}_{36}Kr + {}^{141}_{56}Ba + 3$$

$${}^{99}_{42}Mo \rightarrow {}^{0}_{-1}e +$$

3

The half-life of plutonium-239 is 24110 years. How many years (to the nearest year) must pass after $^{239}_{94}$ Pu is produced for the number of $^{239}_{94}$ Pu atoms to decay to 0.01000 of the original number?

Answer:

• Provide a brief explanation of the process by which nuclear radiation causes biological damage.

• Tritium, ³ ₁ H, in nuclear warheads decays with a half life of 12.26 years and must be replaced. What fraction of the tritium is lost in 5.0 years?		
	ANSWER:	