•	Determine an electronic transition involving the $n = 5$ level of the He ⁺ ion that emits light in the visible region (400–700 nm) of the electromagnetic spectrum.	Marks 3
•	Describe one piece of experimental evidence supporting the conclusion that electrons have wave-like character.	1

• Complete the table below showing the Lewis structures and the predicted shapes of the following species.						
Species	Lewis Structure	Approximate F-X-F bond angle(s)	Name of molecular shape			
SiF4						
SF4						
XeF ₃ ⁺						
XeF ₃ ⁻						

helium but	rgery. In one ffer gas yields 308 nm light a	metastable XeCl molecu nd dissociate into Xe and	al discharge through H iles, described like an d Cl atoms.	ion pair. These	
	element	Ionisation energy / kJ mol ⁻¹	Electron affinity / kJ mol ⁻¹]	
	Xe	1170.4	_		
	Cl	1251.1	-349		
What energions?	gy, in eV, is re	equired to convert a pair	of Xe and Cl atoms in	to Xe^+ and Cl^-	
		Answe	er:		
What ener	gy (in eV) is re	Answe eleased when the XeCl n	er: nolecules emit ultravio	let light?	
What ener	gy (in eV) is re	Answe eleased when the XeCl n	er: nolecules emit ultravio	let light?	
What ener	gy (in eV) is r	Answe eleased when the XeCl n	er: nolecules emit ultravic	let light?	
What ener	gy (in eV) is re	Answe eleased when the XeCl n	er: nolecules emit ultravic	let light?	
What ener	gy (in eV) is r	Answe eleased when the XeCl n	er: nolecules emit ultravic	let light?	
What ener	gy (in eV) is r	Answe eleased when the XeCl n	er: nolecules emit ultravic	let light?	
What ener	gy (in eV) is r	Answe eleased when the XeCl n	er: nolecules emit ultravic	let light?	
What ener	gy (in eV) is r	Answe eleased when the XeCl n	er: nolecules emit ultravio	let light?	
What ener	gy (in eV) is r	Answe eleased when the XeCl n	er: nolecules emit ultravio	let light?	

THIS QUESTION CONTINUES ON THE NEXT PAGE.

• In the spaces provided, explain the meaning of the following terms. You may use an example, equation or diagram where appropriate.	Marks 4
(a) antibonding molecular orbital	
(b) emission spectroscopy	
(c) band gap	
(d) a triple bond	