Marks • The solubility product constant of Fe(OH)₃ is 1×10^{-39} M⁴. What is the concentration of 4 $Fe^{3+}(aq)$ in equilibrium with $Fe(OH)_3$ at pH 7.0? As pH + pOH = 14.0 and $pOH = -log_{10}([OH^{-}(aq)], [OH^{-}(aq)] = 10^{-7.0}$. The dissolution reaction and solubility product are: $Fe(OH)_3(s) \iff Fe^{3+}(aq) + 3OH^{-}(aq) \qquad K_{sp} = [Fe^{3+}(aq)][OH^{-}(aq)]^3$ With $K_{sp} = 1 \times 10^{-39}$ and $[OH^{-}(aq)] = 10^{-7.0}$, $[\mathrm{Fe}^{3+}(\mathrm{aq})] = \frac{K_{\mathrm{sp}}}{[\mathrm{OH}^{-}(\mathrm{aq})]^{3}} = \frac{(1 \times 10^{-39})}{(10^{-7.0})^{3}} = 1 \times 10^{-18} \mathrm{M}$ ANSWER: 1×10^{-18} M To what value does the pH need to be increased to decrease the concentration of $Fe^{3+}(aq)$ to a single $Fe^{3+}(aq)$ ion per litre of solution? A single $Fe^{3+}(aq)$ ion corresponds to: number of moles = $\frac{\text{number of ions}}{\text{Avogadro's number}} = \frac{1}{6.022 \times 10^{23}} = 1.66 \times 10^{-24} \text{ mol}$ If this is in a litre of solution, $[Fe^{3+}(aq)] = 1.66 \times 10^{-24}$ M. As $K_{sp} = [Fe^{3+}(aq)][OH^{-}(aq)]^{3}$, $[OH^{-}(aq)]^{3} = \frac{K_{sp}}{[Fe^{3+}(aq)]} = \frac{(1 \times 10^{-39})}{(1.66 \times 10^{-24})} = 6 \times 10^{-16} \text{ M}^{3}$ $[OH^{-}(aq)] = 8 \times 10^{-6} M$ Thus, $pOH = -log_{10}([OH^{-}(aq)]) = -log_{10}(8 \times 10^{-6}) = 5$ and as pH = 14 - pOH, pH = 14 - 5 = 9ANSWER: 9