CHEM1902/4 2004-N-4 November 2004

• Teeth are made from hydroxyapatite, Ca₅(PO₄)₃OH. Why does an acidic medium promote tooth decay and how can the decay be stopped using fluoridation of drinking water? Use chemical equations where appropriate.

Marks 2

Hydroxyapatite dissolves according to the equation:

$$Ca_5(PO_4)_3OH(s) \iff 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + OH^{-}(aq)$$

This equilibrium lies far to the left so that hydroxyaptite does not dissolve to any significant degree. However, the addition of H_3O^+ (i.e. an acidic medium) will decrease $[OH^-(aq)]$ and push the reaction to the right (Le Chatelier's principle).

Fluoridation of water promotes the replacement of OH^- with F^- to form $Ca_5(PO_4)_3F(s)$. This compound is much less water soluble than $Ca_5(PO_4)_3OH$:

$$Ca_5(PO_4)_3F(s) \iff 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + F^{-}(aq)$$

 F^- is a weaker base than OH^- so this equilibrium is less affected by the addition of H_3O^+ . As the enamel is less soluble, this promotes less tooth decay.