• Solution A consists of a 0.15 M aqueous solution of nitrous acid (HNO₂) at 25 °C. Calculate the pH of Solution A. The pK_a of HNO₂ is 3.15.

Marks 8

Nitrous acid is a weak acid so [H₃O⁺] must again be calculated:

	HNO ₂ (aq)	H ₂ O(l)	 $H_3O^+(aq)$	NO ₂ ⁻ (aq)
initial	0.15	large	0	0
change	- <i>x</i>	negligible	+x	+x
final	0.15 - x	large	x	x

The equilibrium constant K_a is given by:

$$K_{a} = \frac{[H_{3}O^{+}][NO_{2}^{-}]}{[HNO_{2}]} = \frac{x^{2}}{0.15 - x}$$

As $K_a = 10^{-3.15}$ is very small, $0.15 - x \sim 0.15$ and hence:

$$x^2 = 0.15 \times 10^{-3.15}$$
 or $x = 0.0103$ M = [H₃O⁺(aq)]

Hence, the pH is given by:

$$pH = -log_{10}[H_3O^+(aq)] = -log_{10}[0.0103] = 1.99$$

ANSWER: **pH** = **1.99**

ANSWER CONTINUES ON THE NEXT PAGE

At 25 °C, 1.00 L of Solution B consists of 13.8 g of sodium nitrite (NaNO₂) dissolved in water. Calculate the pH of Solution B.

The formula mass of NaNO₂ is (22.99 (Na) + 14.01 (N) + 2×16.00 (O)) g mol⁻¹ = 69 g mol¹. 13.8 g therefore corresponds to:

amount of NaNO₂ = $\frac{\text{mass}}{\text{formula mass}} = \frac{13.8 \text{ g}}{69.0 \text{ g mol}^{-1}} = 0.200 \text{ mol}$

A 1.00 L solution containing this amount has a molarity of 0.200 M. The nitrite ion acts as a base and [OH⁻(aq)] must be calculated from the equilibrium:

	NO ₂ -(aq)	H ₂ O(l)	 OH ⁻ (aq)	HNO ₂ (aq)
initial	0.200	large	0	0
change	- <i>y</i>	negligible	+ <i>y</i>	+ <i>y</i>
final	0.200 - y	large	У	У

The equilibrium constant K_b is given by:

$$K_{\rm a} = \frac{[OH^-][HNO_2]}{[NO_2^-]} = \frac{y^2}{0.200 - y}$$

In aqueous solution, $pK_a + pK_b = 14.00$. Hence $pK_b = (14.00 - 3.15) = 10.85$ and as $K_b = 10^{-10.85}$ is very small, $0.200 - y \sim 0.200$ and hence:

$$y^2 = 0.200 \times 10^{-10.85}$$
 or $y = 1.68 \times 10^{-6} \text{ M} = [\text{OH}^-(\text{aq})]$

Hence, the pOH is given by:

$$pOH = -log_{10}[OH^{-}(aq)] = -log_{10}[1.68 \times 10^{-6}] = 5.77$$

As pH + pOH = 14, pH = 8.23

ANSWER: **pH** = **8.23**

ANSWER CONTINUES ON THE NEXT PAGE

Solution B (1.00 L) is poured into Solution A (1.00 L) and allowed to equilibrate at 25 °C. Calculate the pH of the final solution.

This solution contains an acid and its conjugate base so the Henderson-Hasselbalch equation can be used. As $[acid] = [HNO_2] = 0.15$ M and $[base] = [NO_2^-] = 0.200$ M:

pH = pK_a + log₁₀
$$\left(\frac{[base]}{[acid]}\right)$$
 = 3.15 + log₁₀ $\left(\frac{0.200}{0.15}\right)$ = 3.27

ANSWER: **pH** = **3.27**

If you wanted to adjust the pH of the mixture of Solution A and Solution B to be exactly equal to 3.00, which component in the mixture would you need to increase in concentration?

The acid, HNO₂