• 2-Propanol can be oxidised to acetone using $\operatorname{Cr_2O_7}^{2-}$ in acidic solution as indicated in the reaction below. The rate of decrease of the $\operatorname{Cr_2O_7}^{2-}$ ion under a certain set of conditions is 3.0 mol $\operatorname{L}^{-1}\operatorname{s}^{-1}$.

Marks 4

$$3CH_3CH(OH)CH_3 + Cr_2O_7^{2-} + 8H^+ \rightarrow 3CH_3COCH_3 + 2Cr^{3+} + 7H_2O$$

What is the rate of increase in the concentration of Cr^{3+} ?

6.0 mol L⁻¹ s⁻¹

What is the rate of decrease in the concentration of 2-propanol?

9.0 mol L⁻¹ s⁻¹

The rate law for this reaction is: $Rate = k \left[\text{Cr}_2\text{O}_7^{2-} \right] \left[\text{CH}_3\text{CH}(\text{OH})\text{CH}_3 \right] \left[\text{H}^+ \right]^2$

Complete the following table by writing *increase*, *decrease* or *no change* in the box to indicate how the rate of the reaction is affected by each of the following changes.

H ₃] increas	ncrease in [CH ₃ CH(OH)CH ₃]	increase
H ₃] no char	Increase in [CH ₃ COCH ₃]	no change
oH decreas	Increase in pH	decrease
are increas	Increase in temperature	increase

• Complete the following table.

Formula	Systematic name	Oxidation state of transition metal	Number of <i>d</i> -electrons
K ₂ [Pt(CN) ₄]	potassium tetracyanidoplatinate(II)	+2	8
[Co(H ₂ O) ₆]Cl ₂	hexaaquacobalt(II) chloride	+2	7

4