Marks

7

• The major pollutants NO(g), CO(g), NO₂(g) and CO₂(g) are emitted by cars and can react according to the following equation.

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	$[NO_2]_0(M)$	[CO] ₀ (M)	Initial rate (d[NO ₂]/dt, M s ^{-1})
1	0.263	0.826	$1.44 imes 10^{-5}$
2	0.263	0.413	$1.44 imes 10^{-5}$
3	0.526	0.413	$5.76 imes10^{-5}$

Determine the rate law for the reaction.

Between experiments (1) and (2), $[NO_2]_0$ is constant and $[CO]_0$ is halved. The rate does not change. The rate is independent of [CO]: zero order with respect to [CO].

Between experiments (2) and (3), $[CO]_0$ is kept constant and $[NO_2]_0$ is doubled. The rate increases by a factor of four: the rate is second order with respect to $[NO_2]$.

Overall,

rate $\alpha [NO_2]^2 = k[NO_2]^2$

Calculate the value of the rate constant at 225 °C.

In experiment (1), rate= 1.44×10^{-5} M s⁻¹ when [NO₂] = 0.263 M. Using the rate law:

 $1.44 \times 10^{-5} = k \times (0.263)^2$ so $k = 2.08 \times 10^{-4}$

The units of k can be deduced from the rate law:

rate =
$$k[NO_2]^2$$

M s⁻¹ = (units of k) \times (M)² so k must have units of "M⁻¹ s⁻¹"

Answer: $2.08 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$

ANSWER CONTINUES ON THE NEXT PAGE

Calculate the rate of appearance of CO_2 when $[NO_2] = [CO] = 0.500$ M.

When [NO₂] = 0.500 M, rate =
$$\frac{d[NO_2]}{dt}$$
 = (2.08 × 10⁻⁴) × (0.500)² = 5.20 × 10⁻⁵ M s⁻¹

From the chemical equation, one mole of CO_2 is produced for every mole of NO_2 that is removed. Thus, rate of appearance of CO_2 = rate of loss of NO_2 .

Answer: $5.20 \times 10^{-5} \text{ M s}^{-1}$

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

A possible mechanism is:

$NO_2(g) + NO_2(g) \rightarrow NO(g) + NO_3(g)$	(slow)
$NO_3(g) + CO(g) \rightarrow NO_2(g) + CO_2(g)$	(fast)

The first step is slow and is rate determining. For this step, rate $\alpha [NO_2]^2$, as observed. The second step is fast and does not contribute to the overall rate of the reaction and so the rate is independent of [CO(g)].