•	The major pollutants	NO(g),	CO(g),	$NO_2(g)$	and	$CO_2(g)$	are	emitted	by	cars	and	can
	react according to the	followir	ng equat	ion.								

$$NO_2(g) \ + \ CO(g) \ \rightarrow \ NO(g) \ + \ CO_2(g)$$

The following rate data were collected at 225 °C.

Experiment	$[NO_2]_0(M)$	[CO] ₀ (M)	Initial rate (d[NO ₂]/dt, M s ⁻¹)			
1	0.263	0.826	1.44×10^{-5}			
2	0.263	0.413	1.44×10^{-5}			
3	0.526	0.413	5.76×10^{-5}			

Experiment	$[NO_2]_0(M)$	[CO] ₀ (M)	Initial rate (d[NO ₂]/dt, M s ⁻¹)					
1	0.263	0.826	1.44×10^{-5}					
2	0.263	0.413	1.44×10^{-5}					
3	0.526	0.413	5.76×10^{-5}					
Determine the rate law for the reaction.								
Calculate the value of the rate constant at 225 °C.								
Carculate ti	e value of the rate con-	Stant at 225 C.						
		Answer:						
Calculate th	ne rate of appearance of	$[NO_2] = [NO_2]$	= [CO] = 0.500 M.					
		Answer:						
Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.								