Marks

2

• In order to reduce the incidence of dental cavities, water is fluoridated to a level of 1 mg L^{-1} . In regions where the water is "hard" the calcium concentration is typically 100 mg L⁻¹. Given that the K_{sp} of calcium fluoride is $3.9 \times 10^{-11} \text{ M}^3$, would it precipitate in these conditions? Show all working.

For the dissolution of $CaF_2(s) \iff Ca^{2+}(aq) + 2F'(aq), Q_{sp} = [Ca^{2+}(aq)][F'(aq)]^2$. If $Q_{sp} > K_{sp}$, then $CaF_2(s)$ will precipitate. If $Q_{sp} < K_{sp}$, then $CaF_2(s)$ will completely dissolve.

The atomic mass of calcium is 40.08 g mol⁻¹. A 100 mg L⁻¹ solution contains $\frac{100 \times 10^{-3}}{40.08}$ mol and has a concentration of $\frac{100 \times 10^{-3}}{40.08}$ M. [Ca²⁺(aq)] = 2.495 × 10⁻³ M.

The atomic mass of fluorine is 19.00 g mol⁻¹. A 1 mg L⁻¹ solution contains $\frac{1 \times 10^{-3}}{19.00}$ mol and has a concentration of $\frac{1 \times 10^{-3}}{19.00}$ M. [F⁻(aq)] = 5.263 × 10⁻⁵ M.

Hence, $Q_{sp} = (2.495 \times 10^{-3} \text{ M}) \times (5.263 \times 10^{-5} \text{ M})^2 = 6.911 \times 10^{-12} \text{ M}^3$. As $Q_{sp} < K_{sp}$, calcium fluoride will not precipitate.

Answer: No, it does not precipitate