5

Marks • The primary buffering system in blood plasma is represented by the following equation:

$$H_2CO_3 \iff HCO_3^- + H^+ \qquad pK_a = 6.1$$

What is the ratio HCO_3^- : H_2CO_3 at the normal plasma pH of 7.4?

The Henderson-Hasselbalch equation with $[acid] = [H_2CO_3]$ and [base] =[HCO₃] can be used for this buffer system,

$$pH = pK_{a} + \log_{10} \left(\frac{[base]}{[acid]} \right)$$
$$= 6.1 + \log_{10} \left(\frac{[base]}{[acid]} \right) = 7.4$$
$$[base] = 10^{(7.4-6.1)} = 10^{1.3} = 20$$

= 10' 10 = 20 [acid]

Answer: [base] : [acid] = 20 : 1

A typical person has 2 L of blood plasma. If such a person were to drink 1 L of soft drink with a pH of 2.5, what would the plasma pH be if it were not buffered? (Assume all of the H^+ from the soft drink is absorbed by the plasma, but the volume of plasma does not increase.)

As $pH = -log_{10}[H^+]$, the $[H^+]$ in the soft drink is,

 $[H^+]_{soft drink} = 10^{-2.5} M$

1 L of soft drink therefore contains

number of moles = concentration \times volume = (10^{-2.5} mol L⁻¹ \times 1 L) = 10^{-2.5} mol

If this amount is present in 2 L of plasma,

$$[\mathbf{H}^+]_{\text{plasma}} = \frac{\text{number of moles}}{\text{volume}} = \frac{10^{-2.5}}{2} \text{ M}$$

Hence the pH of the unbuffered plasma is

$$pH = -log_{10}[H^+] = -log_{10}\left(\frac{10^{-2.5}}{2}\right) = 2.8$$
Answer: 2.8

ANSWER CONTINUES ON THE NEXT PAGE

What is the pH in this typical person with a normal HCO_3^- concentration of 0.020 M? Ignore any other contributions to the buffering.

Before the addition of the soft drink, $[HCO_3^-] = 0.020$ M and, at pH 7.4, $[H_2CO_3] = [HCO_3^-] / 20 = 0.0010$ M.

As the soft drink has $10^{-2.5}$ mol of H⁺, its concentration when added to the plasma will again be $[H^+] = \frac{10^{-2.5}}{2}$ M before buffering. Adding it will decrease the base concentration and increase the acid concentration so that,

$$[HCO_3^{-}] = (0.020 - \frac{10^{-2.5}}{2}) M = 0.018 M$$
$$[H_2CO_3] = (0.0010 + \frac{10^{-2.5}}{2}) M = 0.0026 M$$

Hence,

$$\mathbf{pH} = (6.1) + \log_{10} \left(\frac{0.018}{0.0026} \right) = 7.0$$

Answer: 7.0